Structures in C

(Chapter 19)

Structures

*Programs are solving a ‘real world’ problem

 Entities in the real world are real ‘objects’ that need to be represented
using some data structure

= With specific attributes
* Objects may be a collection of basic data types
= In C we call this a structure




Data Structures

*A data structure is a particular organization
of data in memory.
+ We want to group related items together.

+ We want to organize these data bundles in a way that is
convenient to program and efficient to execute.

*An array is one kind of data structure.
* struct — directly supported by C
* linked list — built from struct and dynamic allocation

Variables and Structures

+C gives you freedom to create your own data-types
* We call it a structure in C
* Example:
» Remember complex #? Y = real + imaginary#
» C doesn’t have a complex # type, but we can create one:

We call these “fields”

typedef struct { of the structure

double real, imag;
} complex;

» This “structure” acts as a new data-type for variables:

= Now we can declare a variable like this:
complex my complex var ;




Structures in C — Ex.2

*A struct is a mechanism for grouping together
related data items of different types.
* Recall that an array groups items of a single type.

*Example:
We want to represent an airborne aircraft:
* char flightNum[7];

int altitude;

int longitude;

int latitude;

int heading;

double airSpeed;

*We can use a struct to group these data together for each plane.

Defining a Struct

*We first need to define a new type for the compiler
and tell it what our struct looks like.
estruct flightType {

char flightNum[7]; /* max 6 characters */

int altitude; /* in meters */

int longitude; /* in tenths of degrees */
int latitude; /* in tenths of degrees */
int heading; /* in tenths of degrees */
double airSpeed; /* in km/hr */

°};

*This tells the compiler how big our struct is and
how the different data items (“members”) are laid out in memory.

*But it does not allocate any memory.




Defining and Declaring at Once

*You can both define and declare a struct at the same time.
*struct flightType {

char flightNum[7]; /* max 6 characters */

int altitude; /* in meters */

int longitude; /* in tenths of degrees */
int latitude; /* in tenths of degrees */
int heading; /* in tenths of degrees */
double airSpeed; /* in km/hr */

*} maverick;

*And you can use the flightType name
to declare other structs.

*struct flightType iceMan;

typedef

+C provides a way to define a data type

by giving a new name to a predefined type.
*Syntax:

. typedef <type> <name>;

*Examples:

. typedef int Color;

. typedef struct flightType Flight;

. typedef struct ab type {
int a;
double b;
} ABGroup;




Using typedef

*This gives us a way to make code more readable
by giving application-specific names to types.

e Color pixels[500];
. Flight planel, plane2;

*Typical practice:

*Put typedef’s into a header file, and use type names in
main program. If the definition of Color/Flight

changes, you might not need to change the code in your
main program file.

« Pay attention.....need this in your Project 5.6

Example 3..Structures in C

*Example: We want to represent information pertaining to a
student — that uniquely identifies a student

*No two students have the same values in all fields
* char GWID[9];

char lname[1l6];

char fname[1l6];

float gpa;

*We can use a struct to group these data together for each student.
*Student record
*struct student {
char GWID[9];
char lname[1l6];
char fname[1l6];
float gpa

};

10




Declaring and Using a Struct

*To allocate memory for a struct,
we declare a variable using our new data type.

*struct flightType plane;

*Memory is allocated,

and we can access

individual members of this

variable:

*rlane.airSpeed = 800.0

plane.altitude = 10000;

*A struct’'s members are laid out

in the order specified by the definition.

plane.flightNum[0]

plane.flightNum[6]
plane.altitude
plane.longitude
plane.latitude
plane.heading
plane.airspeed

11

11

Generating Code for Structs
*Suppose our program starts out like this:

*int x;

Flight plane;

int vy;

plane.altitude = 0;

+LC-3 code for this assignment:

*AND R1, R1, #0

ADD RO, R5, #-13 ; RO=plane

STR R1, RO, #7 ; 8th word

R5 —

y
plane.flightNuml[O0]

plane.flightNum[6]
plane.altitude
plane.longitude
plane.latitude
plane.heading
plane.airspeed

X

12

12




Array of Structs

*Can declare an array of structs:
* Flight planes[100];

*Each array element is a struct
*To access member of a particular element:
* planes[34].altitude = 10000;

*Because the [] and . operators are at the same precedence,
and both associate left-to-right, this is the same as:

* (planes[34]).altitude = 10000;

13
13

Pointer to Struct

*We can declare and create a pointer to a struct:

* Flight *planePtr;

planePtr = &planes([34];

*To access a member of the struct addressed by Ptr:

* (*planePtr) .altitude = 10000;

*Because the . operator has higher precedence than *,

this is NOT the same as:

* “*planePtr.altitude = 10000;

C provides special syntax for accessing a struct member

through a pointer:

* planePtr->altitude = 10000;

14

14




Structures and Pointers

*It is very common to have a pointer to a structure.
Example:
complex* ptr;// declares ptr to var of‘complex’
type
* Works the same way as having a pointer to a variable with a built-
in datatype (like int, float, double)

*How do you dereference your pointer to get to fields?
ptr = &my complex var ; // assign pointer
(*ptr) .real = 5 ; // interrogate “real” field
(*ptr) .imag = 6 ;// interrogate “imag” fields

+C offers special syntax to dereference & access fields at
same time:
ptr = &my complex var ; // assign pointer
ptr->real =5 ; // deref & interrogate field
ptr->imag = 6 ; // interrogate fields
15

15

Arrays and Pointers to Struct

*We can declare an array of structs
* student enroll[100]
*Enroll[25].GWID=‘G88881234’
*We can declare and create a pointer to a struct:
* student student *stPtr;
stPtr = &enroll[34];
*To access a member of the struct addressed by Ptr:
* (*stPtr).lname = ‘smith’;

*Or using special syntax for accessing a struct member
through a pointer:

* stPtr-> lname = ‘smith’;

16

16




Ex 1: Passing Structs as Arguments

*Unlike an array, a struct is always passed by value
into a function.
+ This means the struct members are copied to

the function’s activation record, and changes inside the function
are not reflected in the calling routine’s copy.

*Most of the time, you’ll want to pass a pointer to a struct.

*int Collide (Flight *planeA, Flight *planeB)
{
if (planeA->altitude == planeB->altitude) {

}

else
return 0;

17

17

Ex 2: Passing Structs as Arguments

*Unlike an array, a struct is always passed by value
into a function.
» This means the struct members are copied to

the function’s activation record, and changes inside the function
are not reflected in the calling routine’s copy.

*Most of the time, you’ll want to pass a pointer to a struct.

int similar (student *studentA, student *studentB)

{
if (studentA->lname == studentB->lname) {

}

else
return O;

18

18




