
1

Structures in C

(Chapter 19)

1

2

Structures
•Programs are solving a ‘real world’ problem

• Entities in the real world are real ‘objects’ that need to be represented
using some data structure
§ With specific attributes

• Objects may be a collection of basic data types
§ In C we call this a structure

2

2

3

Data Structures
•A data structure is a particular organization
of data in memory.

• We want to group related items together.
• We want to organize these data bundles in a way that is

convenient to program and efficient to execute.

•An array is one kind of data structure.
• struct – directly supported by C
• linked list – built from struct and dynamic allocation

3

4

Variables and Structures

•C gives you freedom to create your own data-types
• We call it a structure in C
• Example:

§ Remember complex #? 𝑌 = 𝑟𝑒𝑎𝑙 + 𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦#
§ C doesn’t have a complex # type, but we can create one:

typedef struct {
double real, imag;

} complex;

• This “structure” acts as a new data-type for variables:
§ Now we can declare a variable like this:

complex my_complex_var ;

We call these “fields”
of the structure

4

3

5

Structures in C – Ex.2
•A struct is a mechanism for grouping together
related data items of different types.

• Recall that an array groups items of a single type.

•Example:
We want to represent an airborne aircraft:
• char flightNum[7];

int altitude;
int longitude;
int latitude;
int heading;
double airSpeed;

•We can use a struct to group these data together for each plane.

5

6

Defining a Struct
•We first need to define a new type for the compiler
and tell it what our struct looks like.
•struct flightType {

char flightNum[7]; /* max 6 characters */
int altitude; /* in meters */
int longitude; /* in tenths of degrees */
int latitude; /* in tenths of degrees */
int heading; /* in tenths of degrees */
double airSpeed; /* in km/hr */

•};

•This tells the compiler how big our struct is and
how the different data items (“members”) are laid out in memory.
•But it does not allocate any memory.

6

4

7

Defining and Declaring at Once
•You can both define and declare a struct at the same time.
•struct flightType {
char flightNum[7]; /* max 6 characters */
int altitude; /* in meters */
int longitude; /* in tenths of degrees */
int latitude; /* in tenths of degrees */
int heading; /* in tenths of degrees */
double airSpeed; /* in km/hr */

•} maverick;

•And you can use the flightType name
to declare other structs.
•struct flightType iceMan;

7

8

typedef
•C provides a way to define a data type
by giving a new name to a predefined type.
•Syntax:
• typedef <type> <name>;

•Examples:
• typedef int Color;

• typedef struct flightType Flight;
• typedef struct ab_type {

int a;
double b;

} ABGroup;

8

5

9

Using typedef
•This gives us a way to make code more readable
by giving application-specific names to types.

• Color pixels[500];
• Flight plane1, plane2;

•Typical practice:
•Put typedef’s into a header file, and use type names in
main program. If the definition of Color/Flight
changes, you might not need to change the code in your
main program file.

• Pay attention…..need this in your Project 5.6

9

10

Example 3..Structures in C
•Example: We want to represent information pertaining to a
student – that uniquely identifies a student

•No two students have the same values in all fields
• char GWID[9];

char lname[16];
char fname[16];
float gpa;

•We can use a struct to group these data together for each student.
•Student record

•struct student {
char GWID[9];

char lname[16];
char fname[16];
float gpa
};

10

6

11

Declaring and Using a Struct
•To allocate memory for a struct,
we declare a variable using our new data type.
•struct flightType plane;

•Memory is allocated,
and we can access
individual members of this
variable:
•plane.airSpeed = 800.0;
plane.altitude = 10000;

•A struct’s members are laid out
in the order specified by the definition.

plane.flightNum[0]

plane.flightNum[6]
plane.altitude
plane.longitude
plane.latitude
plane.heading
plane.airspeed

11

12

Generating Code for Structs
•Suppose our program starts out like this:
•int x;
Flight plane;
int y;

plane.altitude = 0;
•...

•LC-3 code for this assignment:

•AND R1, R1, #0
ADD R0, R5, #-13 ; R0=plane
STR R1, R0, #7 ; 8th word

y
plane.flightNum[0]

plane.flightNum[6]
plane.altitude
plane.longitude
plane.latitude
plane.heading
plane.airspeed

xR5

12

7

13

Array of Structs
•Can declare an array of structs:
• Flight planes[100];

•Each array element is a struct
•To access member of a particular element:
• planes[34].altitude = 10000;

•Because the [] and . operators are at the same precedence,
and both associate left-to-right, this is the same as:
• (planes[34]).altitude = 10000;

13

14

Pointer to Struct
•We can declare and create a pointer to a struct:
• Flight *planePtr;
planePtr = &planes[34];

•To access a member of the struct addressed by Ptr:
• (*planePtr).altitude = 10000;
•Because the . operator has higher precedence than *,
this is NOT the same as:
• *planePtr.altitude = 10000;

•C provides special syntax for accessing a struct member
through a pointer:
• planePtr->altitude = 10000;

14

8

15

Structures and Pointers

•It is very common to have a pointer to a structure.
Example:

complex* ptr;// declares ptr to var of‘complex’
type

• Works the same way as having a pointer to a variable with a built-
in datatype (like int, float, double)

•How do you dereference your pointer to get to fields?
ptr = &my_complex_var ; // assign pointer
(*ptr).real = 5 ; // interrogate “real” field

(*ptr).imag = 6 ;// interrogate “imag” fields

•C offers special syntax to dereference & access fields at
same time:

ptr = &my_complex_var ; // assign pointer

ptr->real = 5 ; // deref & interrogate field

ptr->imag = 6 ; // interrogate fields

15

16

Arrays and Pointers to Struct
•We can declare an array of structs

• student enroll[100]
•Enroll[25].GWID=‘G88881234’

•We can declare and create a pointer to a struct:
• student student *stPtr;

stPtr = &enroll[34];

•To access a member of the struct addressed by Ptr:
• (*stPtr).lname = ‘smith’;

•Or using special syntax for accessing a struct member
through a pointer:
• stPtr-> lname = ‘smith’;

16

9

17

Ex 1: Passing Structs as Arguments
•Unlike an array, a struct is always passed by value
into a function.

• This means the struct members are copied to
the function’s activation record, and changes inside the function
are not reflected in the calling routine’s copy.

•Most of the time, you’ll want to pass a pointer to a struct.

•int Collide(Flight *planeA, Flight *planeB)
{
if (planeA->altitude == planeB->altitude) {

...
}
else
return 0;

}

17

18

Ex 2: Passing Structs as Arguments
•Unlike an array, a struct is always passed by value
into a function.

• This means the struct members are copied to
the function’s activation record, and changes inside the function
are not reflected in the calling routine’s copy.

•Most of the time, you’ll want to pass a pointer to a struct.

int similar(student *studentA, student *studentB)
{
if (studentA->lname == studentB->lname) {

...
}
else
return 0;

}

18

