
1

Pointers & Arrays in C &
Translation to Assembly

(Chapters 16, 19)

1

2

LC3 Memory Allocation & Activation Records

•Global data section: global variables stored
here

•R4 points to beginning

•Run-time stack: for local variables
• R6 points to top of stack
• R5 points to top frame on stack
• Local variables are stored in an activation

record, i.e., stack frame, for each code
block (function)

• New frame for each block/function
(goes away when block exited)

• symbol table “offset” gives distrance from base
of frame (R5 for local var).

• Address of local var = R5 + offset
•Address of global var = R4 + offset

• return address from subroutines in R7

instructions

global data

run-time
stack

0x0000

0xFFFF

PC

R4

R6
R5

2

2

3

Next: Pointers, Arrays, (I/O), Structs . . .
•The real fun stuff in C…..
•Pointers and Arrays

• Read Chapters 16, 18 of text
•Dynamic data structures

• Allocating space during run-time
• Read chapter 19 of text

•C skills...Labs will cover some of these
• Make files
• File I/O
• Debugging – GDB
• Valgrind

• why do you need to know these ?

3

4

C Review: Pointers and Arrays

•Pointer
• Address of a variable in memory
• Allows us to indirectly access variables

§ in other words, we can talk about its address
rather than its value

•Array
• A list of values arranged sequentially in memory
• Expression a[4] refers to the 5th element of the array a

4

3

5

•What are pointers?
• a variable that contains the address of a memory location

•Ex: int *my_ptr ; // declaration
• Declares a variable called my_ptr that contains address of an int.
• The asterisks: * tells compiler this isn’t an integer variable

§ It is a variable that will hold the address of an integer!

• We know this from Assembly:
§ R0 can hold address of a slot in data memory

Pointers

5

6

•Example of use:
int a=0 ; // declares a regular integer variable
int *b ; // declares a pointer to an integer var.
b=&a ; // finds “address” of a, assigns it to b

*b=5 ; // dereferences b, sets value of a=5

Pointers

Address Contents
x4000 (a) 0
x4001 (b) Xx4001 (b) x4000

Address Contents
x4000 (a) 5

Dereferencing – fancy word for: contents at address
Dereferencing pointer b means:

get contents of memory at the address b is pointing to

6

4

7

Pointers
•Two language mechanisms for supporting pointers in C

• * : for dereferencing a pointer
§ called the “Indirection” or “Dereference” operator

• & : for getting the address of a variable
§ :called the “Address Operator”

• These “unary” operators are called Pointer Operators
•Note: There is a difference between pointer operators and
declaring pointer variables:

§ int * my_pointer ;
– “int *” in this context is a “type” not the use of the operator *

§ Confused? Chapter 16 in Patt/Patel is outstanding!

7

8

Why use pointers….
Passing by value is not enough

• In C, arguments/parameters are passed by value
•Arguments pushed onto run-time stack

•Example : you’ve seen this in swap:
•function that's supposed to swap the values of its arguments.

8

5

Executing the Swap Function

a
b
valueB
valueA

3
4
4
3

R6

before call void Swap(int a, int b)
{
int temp = a;
a = b;
b = temp;
return;

}
/* in main we call….*/
Swap(valueA, valueB);

9

Executing the Swap Function

a
b
valueB
valueA

3
4
4
3

R6

before call

temp

a
b
valueB
valueA

3

4
3
4
3

R6

after call
These values
changed...
a,b are local to temp

...but these
did not.

Swap needs addresses of variables outside its own
activation record/scope.

Swap

main

10

6

11

Pointers as Arguments
•Passing a pointer into a function allows the function to
read/change memory outside its activation record.
•Let’s rewrite the swap function

•void swap(int *a, int *b)
{
int t;
t = *a;
*a = *b;
*b = t;

}

Arguments are
integer pointers.
Caller passes addresses
of variables that it wants
function to change.

We call it like this:
int x = 42;
int y = 84;

swap(&x, &y);

11

Tracing the run-time stack
int x = 42;

int y = 84;

swap(&x, &y);

void swap(int *a, int *b)

{

int t;

t = *a;

*a = *b;
*b = t;

}
x 42
y 84

stack

Stack
Frame

for main

12

7

Tracing the call to swap

x 42
y 84
a
b
t 42

Stack
Frame

for swap

stack

int x = 42;

int y = 84;

swap(&x, &y);

void swap(int *a, int *b)

{

int t;

t = *a;
*a = *b;
*b = t;

}

13

Trace

x 84
y 84
a
b
t 42

Stack
Frame

for swap

stack

int x = 42;

int y = 84;

swap(&x, &y);

void swap(int *a, int *b)

{

int t;

t = *a;

*a = *b;
*b = t;

}

14

8

Trace

x 84
y 42
a
b
t 42

Stack
Frame

for swap

stack

int x = 42;

int y = 84;

swap(&x, &y);

void swap(int *a, int *b)

{

int t;

t = *a;

*a = *b;
*b = t;

}

15

Trace

x 84
y 42 Stack

Frame
for main

stack

int x = 42;

int y = 84;

swap(&x, &y);

void swap(int *a, int *b)

{

int t;

t = *a;

*a = *b;
*b = t;

}

16

9

17

Passing Pointers & LC3 Code generation
•How do you pass pointers in the activation record (in LC3
compiler) ?

•Parameters to the function are the addresses of the
arguments!

• Address for a local var is R5 + offset
• Set value of argument = R5+offset

17

18

Passing Pointers to a Function
•main() wants to swap the values of x and y
•passes the addresses to Swap:
•
swap(&x, &y);

•Code for passing arguments:
• ADD R0, R5, #-1 ; addr of x

ADD R6, R6, #-1 ; push
STR R0, R6, #0
ADD R0, R5, #0 ; addr of y
ADD R6, R6, #-1 ; push
STR R0, R6, #0

temp

a
b
y
x

#3000
#2999
4
3

xEFFD

R6

R5

R5= #3000

Address of x,y pushed onto stack

18

10

19

LC3 Code generation (for swap)
•Inside the Swap routine

; int t = *a; get a and dereference

LDR R0, R5, #4 ; R0=#3000
LDR R1, R0, #0 ; R1=M[#3000]=3

STR R1, R5, #0 ; t=3
; *a = *b; get b & dereference

LDR R1, R5, #5 ; R1=#2999
LDR R2, R1, #0 ; R1=M[#2999]=4
STR R2, R0, #0 ; M[#3000]=4

; *b = t;
LDR R2, R5, #0 ; R2=3

STR R2, R1, #0 ; M[#2999]=3

t

a
b
x
y

3

#3000
#2999
3
4

R6
R5

4

3

19

20

Example and C to LC3 translation
int i;
int *ptr;

i = 4;

ptr = &i;
*ptr = *ptr + 1;

store the value 4 into the memory location
associated with i

store the address of i into the
memory location associated with ptr

read the contents of memory
at the address stored in ptr

store the result into memory
at the address stored in ptr Symbol Table: 2 local variables i, ptr

Offset for i =0
Offset for ptr = -1

20

11

21

Example: LC-3 Code –
Questions 1,2 in inclass-nov10.pdf
•Symbol Table: i is 1st local (offset = 0), ptr is 2nd (offset = -1)
•; i = 4;
• AND R0, R0, #0 ; clear R0

ADD R0, R0, #4 ; put 4 in R0
STR R0, R5, #0 ; store in i

; ptr = &i;
ADD R0, R5, #0 ; get addr of I R0= R5+0
STR R0, R5, #-1 ; store in ptr (address R5 -1)

•; *ptr = *ptr + 1;
LDR R0, R5, #-1 ; get R0= ptr
LDR R1, R0, #0 ; dereference/load contents (*ptr)
ADD R1, R1, #1 ;add one
STR R1, R0, #1 ; store result where ptr points

21

22

Pointers
• Powerful and dangerous
• No runtime checking (for efficiency)
• Bad reputation
• Java attempts to remove the features of pointers that cause

many of the problems hence the decision to call them
references
• No address of operators
• No dereferencing operator (always dereferencing)
• No pointer arithmetic

22

12

Pointers & Arrays in C &
Translation to Assembly:
Part 2 – Arrays

23

24

Array Syntax
•Declaration
• type variable[num_elements];

•Array Reference
• variable[index];

all array elements
are of the same type

number of elements must be
known at compile-time

i-th element of array (starting with zero);
no limit checking at compile-time or run-time

24

13

25

Arrays
•What are arrays?

• a collection of many variables of the same type with an index
•Ex: int my_array[10] ; // declaration

• LC-3: allocates 10 slots for 16-bit integers in Data Memory
• These are stored in consecutive locations in memory

Address Contents
x4000 X
x4001 X
x4002 X
… …
x4008 X
x4009 X

my_array

On LC-3:
10 “16-bit” slots

Note: can’t
assume initialized
to 0

Just a label
for memory
location x4000

25

26

Arrays
•Indexing Arrays

• C offers “indexing” capability on array variables
•Ex: In this example: my_array[2] equals 4

• Allocates 10 slots for 16-bit integers in Data Memory
• What happens when you type: my_array [11] ???

Address Contents
x4000 X
x4001 X
x4002 4
… …
x4008 X
x4009 X

Offset of 2
from start:
my_array

On LC-3:
10 “16-bit” slots

Note: can’t
assume initialized
to 0Remember the offset?: LDR RD, RS, Offset

Imagine: LDR R0, my_array, #2

my_array

26

14

27

Arrays and pointers
•Arrays and pointers are intimately connected in C

• Array declarations allocate areas of memory for use
• We are really defining an address (aka – a pointer) to the first element of the

array
•Example – mixing arrays and pointers!

int my_array[10]; // declares array of 10 ints

int *my_ptr; // declares a pointer to an int var.
my_ptr = my_array + 2; // points to 3rd row in array

Address Contents
x4000 X
x4001 X
x4002 4
… …
x4008 X
x4009 X

my_ptr=x4002

my_array

*my_ptr equals 4
Dereferencing ptr:

27

28

Pointers and Arrays – Assembly code versions
• In terms of assembly we can make a distinction between the address

of the start of a block of memory and the values stored in that block of
memory

C Code

int my_array[10]

int *my_ptr;
my_ptr = my_array;

Assembly Code

my_array
.BLKW #10

LEA R0, my_array

; R0 is equiv to
; “my_ptr”

28

15

29

Arrays: Memory layout
int ia[6];

• Allocates consecutive spaces for 6 integers
• How much space is allocated?

• Depends on the type of the array
• How many bytes for an int ?
• How many bytes for a char?
• Ex: if 4 bytes for int, then we need 24 bytes for 6 integers
• Ex: 1 byte for char, then we need 6 bytes for 6 character array

29

30

Arrays
int ia[6];

• Allocates consecutive spaces for 6 integers
• How much space is allocated?

6 * sizeof(int)

• Also creates ia which is effectively a constant pointer to the
first of the six integers

• What does ia[4] mean?

ia

30

16

31

Arrays
int ia[6];

• Allocates consecutive spaces for 6 integers
• How much space is allocated?

6 * sizeof(int)

• Also creates ia which is effectively a constant pointer to the
first of the six integers

• Cannot change ia
• What does ia[4] mean?
• Multiply 4 by sizeof(int). Add to ia and dereference

yielding:

ia

ia[4]

31

32

sizeof
• Compile time operator
• Two forms

sizeof object
sizeof (type name)

• Returns the size of the object or the size of objects of type
name in bytes

• Note: Parentheses can be used in the first form with no
adverse effects

32

17

33

sizeof
• if sizeof(int) == 4 then sizeof(i) == 4
• On a typical 32 bit machine...

sizeof(*ip) ® 4

sizeof(ip) ® 4
char *cp;
sizeof(char) ® 1

sizeof(*cp) ® 1
sizeof(cp) ® 4

int ia[6];

sizeof(ia) ® 24

Not the same thing!!!

33

34

Arrays
int ia[6];

ia

• ia[4] means *(ia + 4)

34

18

35

Pointer Arithmetic
• Note on the previous slide when we added the literal 4 to a

pointer it actually gets interpreted to mean
4 * sizeof(thing being pointed at)

• This is why pointers have associated with them what they
are pointing at!

• C does size calculations under the covers, depending on
size of item being pointed to:

•double x[10];
•double *y = x;

*(y + 3) = 13;

allocates 20 words (2 per element)

same as x[3] -- base address plus 6

35

36

Pointer Arithmetic
•Address calculations depend on size of elements

• In our LC-3 code, we've been assuming one word per element.
§ e.g., to find 4th element, we add 4 to base address

• It's ok, because we've only shown code for int and char,
both of which take up one word.

• If double, we'd have to add 8 to find address of 4th element.

36

19

37

Pointer Arithmetic
•Just as we used arithmetic on address values to iterate
through arrays in assembly, we can use arithmetic on
pointer values in C

•float my_array[10]; // declares array of 10 floats
•float *my_ptr; // declares a pointer to a float
•my_ptr = my_array + 2; // points to 3rd row in array

•my_ptr = my_ptr + 1; // points to 4th row in array

• Compiler looks at the type of variable being pointed to and
increments by the correct amount to point to the next element

• In this case ptr may actually be incremented by 4 since each float
takes up 4 bytes

37

38

Pointers/Arrays/Strings
•There is no “string” datatype in C

• But we can use arrays of char’s to mimic behavior
•Simplest Ways to Declare “Strings”:

• char my_string [256] ;

§ Works just like any array, each element is character
my_string[0]=‘T’ ;
my_string[1]=‘h’ ;

§ You must “null terminate” this array
§ Note: no way to know length of an array

– Unless one loops through it entirely and determines ending
§ Pass “my_string” as argument to functions!

– That’s the 1st address of the string in memory
• char *my_string = “This is a string” ;

§ Will be null terminated
§ Cannot be modified

38

20

39

Relationship between Arrays and Pointers
•An array name is essentially a pointer
to the first element in the array

char word[10];
char *cptr;

cptr = word;/* points to word[0] */

•Difference:
Can change the contents of cptr, as in
• cptr = cptr + 1;

•(The identifier "word" is not a variable.)

39

40

Correspondence between Ptr and Array Notation
•Given the declarations,
each line below gives three equivalent expressions:
•cptr word &word[0]
•(cptr + n) word + n &word[n]

•*cptr *word word[0]
•*(cptr + n) *(word + n) word[n]

char word[10];
char *cptr;
cptr = word;/* points to word[0] */

40

21

41

Passing Arrays as Arguments
•C passes arrays by reference

• the address of the array (i.e., of the first element)
is written to the function's activation record

• otherwise, would have to copy each element
main() {

int numbers[MAX_NUMS];

…
mean = Average(numbers);
…

}

int Average(int inputValues[MAX_NUMS]) {
…
for (index = 0; index < MAX_NUMS; index++)

sum = sum + inputValues[index];
return (sum / MAX_NUMS);

}

This must be a constant, e.g.,
#define MAX_NUMS 10

41

42

Array as a Local Variable
int foo(int myarray[])
{
int grid[10];

…
}

42

22

43

Array as a Local Variable
•Array elements are allocated
as part of the activation record.

int grid[10];

•First element (grid[0])
is at lowest address
of allocated space.

If grid is first variable allocated,
then R5 will point to grid[9].

grid[0]
grid[1]
grid[2]
grid[3]
grid[4]
grid[5]
grid[6]
grid[7]
grid[8]
grid[9]

43

44

C to Assembly Translation- Arrays

44

23

45

Example and C to LC3 translation
int foo(){
int grid[10];
int x,
int *ptr;

int i;
….
grid[6] =5;

x = grid[3] + 1;
grid[i] = x;
ptr = grid;
grid[x] = grid[x] +2;

…
}

Symbol Table
Identifier offset
grid -9
x -10
ptr -11
i -12

45

46

LC-3 Code for Array References
grid[6] =5;
x = grid[3] + 1;
grid[i] = x;
ptr=grid;

grid[x+1] = grid[x] +2;
where is @grid[0] (address grid[0])
??? @grid[6] = @grid[0} +6

??? ; plus 1
STR ??? ; store into x
@grid[i] = @grid[0] + i

i
ptr
x
grid[0]
grid[1]
grid[2]
grid[3]
grid[4]
grid[5]
grid[6]
grid[7]
grid[8]
grid[9]R5

46

24

47

LC-3 Code for Array References
; grid[6] = 5;
AND R0, R0, #0
ADD R0, R0, #5 ; R0 = 5
ADD R1, R5, #-9 ; R1 = &grid[0]

STR R0, R1, #6 ; grid[6] = R0

x
grid[0]
grid[1]
grid[2]
grid[3]
grid[4]
grid[5]
grid[6]
grid[7]
grid[8]
grid[9]R5

47

48

LC-3 Code for Array References
; x = grid[3] + 1
ADD R0, R5, #-9; R0 = &grid[0]
LDR R1, R0, #3; R1 = grid[3]
ADD R1, R1, #1; add 1

STR R1, R5, #-10;store to x = R1

x
grid[0]
grid[1]
grid[2]
grid[3]
grid[4]
grid[5]
grid[6]
grid[7]
grid[8]
grid[9]R5

48

25

49

More LC-3 Code
; grid[x+1] = grid[x] + 2
LDR R0, R5, #-10 ; R0 = x
ADD R1, R5, #-9 ; R1 = &grid[0]
ADD R1, R0, R1 ; R1 = &grid[x]
LDR R2, R1, #0 ; R2 = grid[x]
ADD R2, R2, #2 ; add 2

LDR R0, R5, #-10 ; R0 = x
ADD R0, R0, #1 ; R0 = x+1
ADD R1, R5, #-9 ; R1 = &grid[0]
ADD R1, R0, R1 ; R1 = &grix[x+1]
STR R2, R1, #0 ; grid[x+1] = R2

x
grid[0]
grid[1]
grid[2]
grid[3]
grid[4]
grid[5]
grid[6]
grid[7]
grid[8]
grid[9]R5

49

50

Common Pitfalls with Arrays in C
•Overrun array limits

• There is no checking at run-time or compile-time
to see whether reference is within array bounds.

• int array[10];
int i;
for (i = 0; i <= 10; i++) array[i] = 0;

•Declaration with variable size
• Size of array must be known at compile time.

• void SomeFunction(int num_elements) {
int temp[num_elements];
…

}

50

26

51

Recall
int ia[6];

ia[2] = 42;

Address calculation:
2 * sizeof(*ia) + ia

Access is by dereferencing
*(2 * sizeof(*ia) + ia)

42

Remember!
You don't type in
the sizeof part!

51

52

What happens?
int ia[6];

ia[8] = 84;

Address calculation:
8 * sizeof(*ia) + ia

42 84

Remember!
You don't type in
the sizeof part!

52

27

53

Stack Smashing
int another(int a, int b) {

int x[4];

x[1]

x[2]

b

a

Return Val

Return Addr

Old FP

x[3] FP

x[0]

53

54

Stack Smashing
int another(int a, int b) {

int x[4];

x[1]

x[2]

x[8] b

x[7] a

x[6] Ret Val

x[5] Ret Addr

x[4] Old FP

x[3] FP

x[0]

54

28

Multidimensional Arrays
in C

55

56

Declaration
int ia[3][4];

Type
Address

Number
of Rows

Number
of Columns

Declaration at compile time
i.e. size must be known

56

29

57

How does a two dimensional array work?

How would you store it?

0 1 2 3

0

1

2

57

58

How would you store it?0 1 2 3
0
1
2

0,0 0,1 0,2 0,31,0 1,1 1,2 1,32,0 2,1 2,2 2,3

Column 0 Column 1 Column 2 Column 3

Column Major Order

0,0 0,1 0,2 0,3 1,0 1,1 1,2 1,3 2,0 2,1 2,2 2,3

Row 0 Row 2Row 1

Row Major Order

58

30

59

Advantage
• Using Row Major Order allows visualization as an array of arrays

ia[1]

ia[1][2]

0,0 0,1 0,2 0,3 1,0 1,1 1,3 2,0 2,1 2,2 2,31,2

0,0 0,1 0,2 0,3 1,0 1,1 1,3 2,0 2,1 2,2 2,31,2

59

60

Element Access
• Given a row and a column index
• How to calculate location?
• To skip over required number of rows:

row_index * sizeof(row)
row_index * Number_of_columns * sizeof(arr_type)

• This plus address of array gives address of first element of desired row
• Add column_index * sizeof(arr_type) to get actual desired

element

0,0 0,1 0,2 0,3 1,0 1,1 1,2 1,3 2,0 2,1 2,2 2,3

60

31

61

Element Access

Element_Address =

Array_Address +
Row_Index * Num_Columns * Sizeof(Arr_Type) +
Column_Index * Sizeof(Arr_Type)

Element_Address =

Array_Address +

(Row_Index * Num_Columns + Column_Index) *
Sizeof(Arr_Type)

61

62

What if array is stored in Column Major Order?

Element_Address =

Array_Address +

(Column_Index * Num_Rows + Row_Index) *

Sizeof(Arr_Type)

0,0 0,1 0,2 0,31,0 1,1 1,2 1,32,0 2,1 2,2 2,3

62

32

63

How does C store arrays
•Row major

• Pointer arithmetic stays unmodified

•Remember this…..
• Affects how well your program does when you access memory

63

64

Now think about
• A 3D array

int a

64

33

65

Now think about
• A 3D array

int a[5]

65

66

Now think about
• A 3D array

int a[4][5]

66

34

67

Now think about
• A 3D array

int a[3][4][5]

67

68

Offset to a[i][j][k]?
• A 3D array

int a[3][4][5]
[slices][rows][columns]

offset = (i * rows * columns) + (j * columns)
+ k

68

35

Recall
• One Dimensional Array

int ia[6];

• Address of beginning of
array:

ia º &ia[0]

• Two Dimensional Array
int ia[3][6];

• Address of beginning of
array:

ia º &ia[0][0]

• also
• Address of row 0:

ia[0] º &ia[0][0]

• Address of row 1:
ia[1] º &ia[1][0]

• Address of row 2:
ia[2] º &ia[2][0]

69

70

Static vs. Dynamic Allocation
• There are two different ways that multidimensional arrays could be

implemented in C.

• Static: When you know the size at compile time
• A Static implementation which is more efficient in terms of space and

probably more efficient in terms of time.
• Dynamic: what if you don’t know the size at compile time?

• More flexible in terms of run time definition but more complicated to
understand and build

• Dynamic data structures
• Need to allocate memory at run-time – malloc

• Once you are done using this, then release this memory – free

• Next: Dynamic Memory Alloction

70

