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Code Optimization

1

Code optimization for performance
•A quick look at some techniques that can improve the 
performance of your code

•Rewrite code to minimize processor cycles
• But do not mess up the correctness!
• Reduce number of instructions executed
• Reduce the “complexity” of instructions

o In real processors, different arithmetic operations can take 
different times

•Locality
• Will improve memory performance
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Recall  CPU time model
CPU time =  Seconds    =   Instructions  x    Cycles     x   Seconds

Program Program          Instruction       Cycle

CPU = IC * CPI * Clk
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Summary: Memory Access time optimization
•If each access to memory leads to a cache hit then time 
to fetch from memory is one cycle

• Program performance is good!
•If each access to memory leads to a cache miss then 
time to fetch from memory is much larger than 1 cycle

• Program performance is bad!
•Design Goal:
How to arrange data/instructions so that we have as few 
cache misses as possible.
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Who can ‘change’ each parameter
• CPU time = IC * CPI * Clk
• Clock: completely under HW control
• IC: programmer and compiler
• CPI: compiler and HW
•….so what does a compiler do?
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Compiler Tasks
• 1. Code Translation

• Source language ® target language
FORTRAN ® C
C ® MIPS, x86, PowerPC or Alpha machine code
MIPS binary ® x86 binary

• 2. Code Optimization
• Code runs faster
• Match dynamic code behavior to static machine structure
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Compiler Structure

Front End Optimizer Back End

Machine  independent Machine dependent

high-level
source
code

IR machine
code

Dependence
Analyzer

(IR= intermediate representation)

IR
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Compiler Front End tasks
• Lexical Analysis

• Misspelling an identifier, keyword, or operator
o e.g. lex

done by a finite state machine (i.e., deterministic finite automata)!

• Syntax Analysis
• Grammar errors, such as mismatched parentheses
• Define syntax using Context Free Grammar…then build parser

e.g. yacc

• Semantic Analysis
• Type checking, check formal and actual arguments to function 

match, etc.
• code generation…you’ve been doing this for C to LC3!!

• to target ISA or intermediate code, llvm-code
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Code Optimization
• After front end analysis an executable program P

• P has some performance T(P )
• T(P) = IC*CPI* Clock 

• Goal: Improve T(P)
• Reduce time
• How ? Reduce CPI and/or IC

• Rewrite/transform P to equivalent program Q such that
1. T(Q) < T(P) and
2. Q and P are equivalent, i.e, do exactly the same thing

o For all inputs, Q and P produce the same result and compute the 
same function
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Formal Model for Code Optimization ?
•Is it a hack job or is there a formal model underlying the 
various transformations that can help with designing a tool to 
optimize code ?

• Need to make sure that transformed code is correct and does not 
change semantics of the original program.

•Power of abstraction…..
•Graph theory: model program as a graph (Program 
dependence graph)

• Model data and control dependencies
• Code transformation = graph transformation
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The Program Dependence Graph

• How to represent control and data flow of a program ?
• The Program Dependence Graph (PDG) is the intermediate 

(abstract) representation of a program designed for use in 
optimizations

• It consists of two important graphs:
• Control Dependence Graph captures control flow and control 

dependence
• Data Dependence Graph captures data dependences

• Analogous to a flow-chart of the program
• Formal model for flow charts!
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Definition: Control Flow Graph

A control flow graph CFG = ( Nc ; Ec ; Tc ) consists of

• Nc, a set of nodes. A node represents a straight-line  
sequence of operations with no intervening control 
flow i.e. a basic block.

• Ec Í Nc x Nc x Labels, a set of labeled edges.

• Example: the code below has two basic blocks
ADD R0, R0, #0
BRn here1
LDR R1, R0, #0
ADD R2, R1, R2
BRzp here2
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Data Dependence Graph
• Within each basic block capture the data dependencies 
between instructions

• In RISC processor, follow the data in the registers
• Value computed in a register is needed by an instruction in the future
• Ex: 

o Value computed by LDR is needed by next instruction
o But no dependence between AND and the other instructions

• Can capture these dependencies using a graph
• Nodes are instructions and edges dependencies

• Data dependencies important in
• Scheduling instructions
• Parallelizing the code

LDR R1, R0, #0

ADD R2, R1, R2
AND R3, R3, #4
BRzp here2
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Control Flow Graph

BB 1

BB 2

BB 3 BB 4

BB 5

             main:
           addi r2, r0, A   
           addi r3, r0, B   
           addi r4, r0, C      BB 1
           addi r5, r0, N   
           add  r10,r0, r0  
           bge  r10,r5, end 
     loop:
           lw   r20, 0(r2)  
           lw   r21, 0(r3)     BB 2
           bge  r20,r21,T1  
           sw   r21, 0(r4)     BB 3
           b    T2              
     T1:                    
           sw   r20, 0(r4)     BB 4
     T2:
           addi r10,r10,1   
           addi r2, r2, 4   
           addi r3, r3, 4      BB 5
           addi r4, r4, 4   
           blt  r10,r5, loop
     end: 
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Program behaviour ?
•Model as program dependence graph!
•What is a correct execution ?

• Execution will only follow valid paths in the program dependence 
graph!
o IF code is written correctly, then force the program to only 

follow paths in the dependence graph!
•connection to Software security/correctness

• Only execute along paths in the graph = program cannot execute any 
malicious code
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Formal Definition/Model:  Code Optimization

•Need to make sure that transformed code is correct and does 
not change semantics of the original program.

•model program as a graph (Program dependence graph)
• Model data and control dependencies

•Any transformation should give us a homomorphic graph
• Recall concept of Isomorphism/Homomorphism Discrete 

Structures courses !!!

•Bad news: checking graph isomorphism is NP-complete !
• Therefore … ???
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Compiler optimizations
•Use ‘heuristics’ to solve the difficult problem
•All ‘useful’ compilers have code optimizers built into them

• Optimize time….
• other metrics: power ? Code size?

o Why ?
•Machine dependent optimizations

• Need to know something about the processor details before we can 
optimize

•Machine independent optimizations
• These are independent of processor specifics
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Machine Dependent Optimizations

•Register Allocation

•Instruction Scheduling

•Peephole Optimizations

These need some knowledge of the processor

18
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Peephole Optimizations
•Replacements of assembly instruction through template 
matching

•Eg. Replacing one addressing mode with another in a CISC

19

Instruction Scheduling

•Given a source program P, schedule the instructions so as 
to minimize the overall execution time on the functional 
units in the target machine

• This is where processors with parallelism introduce complexity 
into the scheduling process

• Schedule parallel instructions

•Finding a schedule with minimum execution time is an NP-
complete problem

• Need fast and effective heuristics
• You will cover schedulers in Operating Systems course
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Register Allocation
•Storing and accessing variables from registers is 
much faster than accessing data from memory.

• Variables ought to be stored in registers
•It is useful to store variables as long as possible, once 
they are loaded into registers

•Registers are bounded in number
• “register-sharing” is needed over time.
• Some variables have to be ‘flushed’ to memory
• Reading from memory takes longer

• how important is Register allocation to performance?
• efficient register allocators improved performance 25%
• Poor allocation means repeatedly reading variables from 

memory
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Register Allocation
{ …

i=10;
x= y +i;
while (i<100) {

a = a*100
b = b + 100
i++;

}
•Suppose you have 3 registers available…
•should you place a and b into same register ?
•Can you place x and a into same register ?

22
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Register Allocation
{ …

i=10;
x= y +i;
while (i<100){

a = a*100
b = b +100
i++;

}
•“live range” LR(j) for each variable j – where is it accessed
•Do live ranges of x and a “interfere” : LR(x)  & LR(a) = 0?
•Do live ranges of a and b interfere ? : LR(a) &  LR(b) = 0?
•If ranges interfere, then assign to different registers 

LR(a)

LR(i)

LR(x)

LR(b)

LR(y)
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Register Allocation: Problem 
Formulation and Solution

• Determine live ranges for each variable, and determine 
conflicts/interference between variables/live ranges

• Using dataflow analysis compute live ranges for each variable
•How do we model the register allocation problem?

• Power of abstraction!!
•Formulate the problem of assigning variables to registers 
as a graph problem: The Graph coloring problem !

o Number of colors = Number of registers; 
o Nodes in graph = number of variables (live ranges)
o Edges in graph = edge between x,y if live ranges x,y interfere

• Use application domain (Instruction execution) to define the 
priority function

•Graph theory & CS – it is every &#@&@ place!
• My curriculum advice (that nobody takes…except 2): take a graph 

theory course!
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Machine Dependent Optimizations
•Need thorough knowledge of the architecture AND algorithms
•New architectures introduce new challenges…

• Multi-core, Multi-threaded, Embedded (need to optimize for power 
consumption), Security (compiler-HW tools to enforce software 
security)

• Compiling for FPGA co-processors to accelerate (ex: AWS, Microsoft)
• Compiling for Security – leverage FPGAs & extra HW to 
place verification and encryption circuits

• Compiling for power optimization 
• control memory power using compiler….layout the data so we can 

switch off memory modules
•Machine dependent optimizations can be done by a compiler 
writer….Huge demand in industry….

• But few CS students want to study this stuff L …and, this is not our 
focus for now!

My Research Areas
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Our focus: Machine Independent 
Optimizations
•As SW developers, these should be a ‘default’ when you write 
code…

• THIS is what separates you from those who take a single 
programming course and claim they know CS!!

•How does it work: a large ‘menu’ of optimization techniques
• Some dependent on general architecture

o Ex: Pipelined processors and loop unrolling
• We cover a small sample that works on all processors

26
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Some Machine-Independent Optimizations
• Some easy/obvious ones: Dataflow Analysis and 

Optimizations
• Constant folding, Copy propagation etc.
• Elimination of common subexpression
• Dead code elimination

• Code motion
• Strength reduction
• Function/Procedure inlining
• Improving memory locality

27

Code-Optimizing Transformations

• Constant folding
(1 + 2)   Þ 3
(100 > 0) Þ true

This save one instruction – reduce IC

28
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Code-Optimizing Transformations
• Copy propagation

x  =  b + c x  = b + c
z  =  y * x      z  = y * (b + c)Þ

Why does this make a difference: Recall how code is generated..
(b+c) is stored into a temp register R0 and then STR R0, R5, #-2 to store 
local var x. Code generated for the 2nd statement z = y*x is:

LDR R0, R5, #-2 ; Load x into R0
LDR R1, R5, #-3 ; load y into R1
MUL R2, R0, R1 ; multiply x,y and store into R2
Replace above with
LDR R1, R5, #-3 ; load y into R1
MUL R2, R0,R1 ; multiply with value (b+c) stored in R0

This saves one memory access..reduces IC and CPI
29

Code-Optimizing Transformations

• Common subexpression – reduce instruction count
x  =  b * c + 4 t  = b * c
z  =  b * c - 1   x  = t + 4

z  = t – 1

• 2 mult, 1 add, 1 sub replaced by 
• 1 mult, 1 add, 1 sub

• Reduces IC

Þ

30
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Code-Optimizing Transformations

• Dead code elimination
x  =  1
x  =  b + c or if x is not referred to at all

Saves one instruction…reduce IC

31

Code Optimization Example
x =  1
y  =  a * b + 3
z  =  a * b + x + z + 2
x  =  3

propagation
x  =  1
y  =  a * b + 3
z  =  a * b + 1 + z + 2
x  =  3

constant
folding

x  =  1
y  =  a * b + 3
z  =  a * b + 3 + z 
x  =  3

dead code
elimination

y  =  a * b + 3
z  =  a * b + 3 + z 
x  =  3

common
subexpression

t   =  a * b + 3
y  =  t
z  =  t + z 
x  =  3

Original: 2 Mult, 4 Add, 7 Read/Write Mem
New: 1 Mult, 2 Add, 5 Read/Write

32
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Code Motion
• Code Motion

• Reduce frequency with which computation performed
o If it will always produce same result
o Especially moving code out of loop

• Move code between blocks
• eg. move loop invariant computations outside of loops

• What does this reduce ?
• Number of times x/y is computed…reduce IC

t  =  x / y
while ( i < 100 ) { while ( i < 100 )  {

*p  =  x / y + i *p  =  t + i
i  =  i + 1 i  =  i  + 1

} }

33

• Code Motion:
• Most compilers do a good job with array code + simple loop 

structures
• Code Generated by GCC

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
a[n*i + j] = b[j];

for (i = 0; i < n; i++) 
{
int ni = n*i;
int *p = a+ni;
for (j = 0; j < n; 

j++)
*p++ = b[j];

}

34
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• Replace costly operation with simpler one
• Shift, add instead of multiply or divide

16*x --> x << 4

o Utility is machine dependent
o Depends on cost of multiply or divide instruction
o On Pentium x86, integer multiply only requires 4 CPU cycles

• Recognize sequence of products

for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
a[n*i + j] = b[j];

int ni = 0;
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++)
a[ni + j] = b[j];

ni = ni + n;
}

Strength Reduction

35

Strength Reduction
• Replace complex (and costly) expressions with 

simpler ones
• What does this reduce ?...the CPI

• E.g.
a : = b*17 a: = (b<<4) + b

• E.g.
p  =  & a[ i ]
t  =  i * 100

while ( i < 100 ) { while ( i < 100 ) {
a[ i ] =  i * 100 *p  =  t
i =  i + 1 t  =  t + 100

} p  =  p  +  4
i =  i + 1

}

loop invariant: &a[i]==p, i*100==t

36
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Function Inlining
•What happens on a function call ?

• How are function calls implemented on the machine ?
• Is function call = one subroutine call ?

•Function call in C = number of instructions in machine code
• Create activation records, allocate memory
• Manipulate stack and frame pointers

•What happens if we replace function call with body of function 
• i.e., Inline the function

37

Function Call/Return
•Instructions to Push arguments to stack
•Instructions to Push frame pointer, return addr. 
•Execute instructions of function
•Instructions to Pop return value, reset frame pointer, pop 
return address

•The bookkeeping instructions are essentially an 
“overhead”

• They do not do the work of the function
•What happens if we replace function call with body of 
function ?

• Inline the function
• Remove the function call and return overhead instructions
• …reduce IC

38
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Function Inlining

… int myfunc(int m,n)
x= myfunc(i,j) {
… return(m+n);}

After inlining:
…
x = m+n
…..

• Improves performance 
• Removes bookkeeping instructions

• but tradeoff with code readability 
• and code size

39

Finally….Memory Locality & Code 
Performance

40
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Locality

• Recall Principle of Locality:
• Programs tend to reuse data and instructions near those they 

have used recently, or that were recently referenced themselves.
• Temporal locality: Recently referenced items are likely to be 

referenced in the near future.
• Spatial locality: Items with nearby addresses tend to be 

referenced close together in time.

41

Link with Memory organization…  . . 
•Let’s use array data structures to guide our discussions
•Recall: accesses to cache better than accesses to main 
memory/disk

•Recall: Multidimensional Arrays

42
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Declaration
int ia[3][4];

Type
Address

Number
of Rows

Number
of Columns

Declaration at compile time
i.e. size must be known

43

How does a two dimensional array work?

How would you store it?

0 1 2 3

0

1

2

44
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How would you store it?0 1 2 3
0
1
2

0,0 0,1 0,2 0,31,0 1,1 1,2 1,32,0 2,1 2,2 2,3

Column 0 Column 1 Column 2 Column 3

Column Major Order

0,0 0,1 0,2 0,3 1,0 1,1 1,2 1,3 2,0 2,1 2,2 2,3

Row 0 Row 2Row 1

Row Major Order

45

How would you store it?0 1 2 3
0
1
2

0,0 0,1 0,2 0,31,0 1,1 1,2 1,32,0 2,1 2,2 2,3

Column 0 Column 1 Column 2 Column 3

Column Major Order

0,0 0,1 0,2 0,3 1,0 1,1 1,2 1,3 2,0 2,1 2,2 2,3

Row 0 Row 2Row 1

Row Major Order

C stores in row major order

46
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Locality of Access
•How are elements in the array accessed in your program ?

• Row major or column major or other ?
• How would you iterate over the 2-D array to maintain locality ?

47

Locality and performance
•Recall: Memory = Cache + Main memory

• Cache contains small number of bytes
•Recall: cache is arranged as a set of blocks

• Can only fetch block at a time
•Example:

• Assume each cache block has 4 words
• If you fetch a block with addresses {0,1,2,3} 
• If four successive instructions use locations 0,1,2,3 then we only have 

one cache miss (first time to fetch block into cache)
• If four successive instructions use locations 0,4,8,12 then each time 

we have to fetch a new cache block
o Each memory access is an access to main memory

•Goal: have locality in memory accesses

48
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Example
Memory

Cache
0,1,2,3

(0,1,2,3)
(4,5,6,7)

(8,9,10,11)
(12,13,14,15)
(16,17,18,19)

Addresses
In each block

0
1
2
3

4 bytes in
each block
Addresses:

(0,1,2,3)

4,5,6,7
8,9,10,1

112,13,14,15

49

Locality
• Being able to look at code and get a qualitative sense of its 

locality is a key skill for a professional software developer.

50
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Locality Example
• Question: Does this function have good locality?

int sumarraycols(int a[M][N])
{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

sum += a[i][j];
return sum

}

0 1 2 3

0

1

2

Access pattern
Column-major

51

Locality Example
• Question: Does this function have good locality?
int sumarrayrows(int a[M][N])
{

int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

sum += a[i][j];
return sum

}
0 1 2 3

0

1

2
Access pattern

Row-major

52
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Improving Memory Access Times 
(Cache Performance) by Compiler 
Optimizations

• McFarling [1989] improve perf. By rewriting the software
• Instructions

• Reorder procedures in memory so as to reduce cache misses
• Code Profiling to look at cache misses(using tools they developed)

• Data
• Merging Arrays: improve spatial locality by single array of compound 

elements vs. 2 arrays
• Loop Interchange: change nesting of loops to access data in order 

stored in memory
• Loop Fusion: Combine 2 independent loops that have same looping 

and some variables overlap
• Blocking: Improve temporal locality by accessing “blocks” of data 

repeatedly vs. going down whole columns or rows

53

Compiler optimizations – merging 
arrays

• This works by improving spatial locality
• For example, some programs may reference multiple 

arrays of the same size at the same time
• Could be bad – not enough locality

o Accesses may interfere with one another in the cache – conflict misses

• A solution:  Generate a single, compound array…

/* Before:*/
int tag[SIZE]
int byte1[SIZE]
int byte2[SIZE]
int dirty[size]

/* After */
struct merge {

int tag;
int byte1;
int byte2;
int dirty;

}
struct merge cache_block_entry[SIZE]

54
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Merging Arrays Example

/* Before: 2 sequential arrays */
int val[SIZE];
int key[SIZE];

/* After: 1 array of stuctures */
struct merge {
int val;
int key;

};
struct merge merged_array[SIZE];

Reducing conflicts between val & key; 
improve spatial locality

55

Compiler optimizations – loop 
interchange

• Some programs have nested loops that access memory in 
non-sequential order
• Simply changing the order of the loops may make them access the 

data in sequential order…
• What’s an example of this?

• Recall: C stores 2-D arrays in row-major format
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Loop Interchange Example

/* Before */
for (k = 0; k < 100; k = k+1)
for (j = 0; j < 100; j = j+1)

for (i = 0; i < 5000; i = i+1)
x[i][j] = 2 * x[i][j];

57

Loop Interchange Example

/* After */
for (k = 0; k < 100; k = k+1)
for (i = 0; i < 5000; i = i+1)

for (j = 0; j < 100; j = j+1)
x[i][j] = 2 * x[i][j];

Sequential accesses instead of striding through 
memory every 100 words; improved spatial 
locality
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Compiler optimizations – loop fusion
• This one’s pretty obvious once you hear what it is…
• Seeks to take advantage of:

• Programs that have separate sections of code that access the same 
arrays in different loops
o Especially when the loops use common data

• The idea is to “fuse” the loops into one common loop
• What’s the target of this optimization?

• Locality – reduce memory access times
• IC – by reducing number of branches

o Important in pipelined processors

59

Loop Fusion Example

/* Before */
for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)

a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];

Move inside
first loop
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Loop Fusion Example

/* After */
for (i = 0; i < N; i = i+1)
for (j = 0; j < N; j = j+1)
{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}

2 misses per access to a & c vs. one miss per access; 
improve spatial locality & temporal locality

61

A more general concept: Memory Blocking. 
•Can you keep locality in all memory operations
•This is probably the most “famous” of compiler 
optimizations to improve cache performance

•Another common concept: blocking
• Rewrite code to process blocks of data at a time
• Size of block = ???? Size of cache block!!
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Compiler optimizations – blocking
• Tries to reduce misses by improving temporal locality and 

spatial locality
• To get a handle on this, you have to work through code on 

your own
• this is used mainly with arrays!
• Simplest case??

• Row-major access

63
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Naïve Matrix Multiply
{implements C = C + A*B}
for i = 1 to n
{read row i of A into fast memory}
for j = 1 to n

{read C(i,j) into fast memory}
{read column j of B into fast memory; note column major access!}
for k = 1 to n

C(i,j) = C(i,j) + A(i,k) * B(k,j)
{write C(i,j) back to slow memory}

= + *
C(i,j) A(i,:)

B(:,j)
C(i,j)

Good locality in access to matrix A; poor locality in access to B
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Blocked (Tiled) Matrix Multiply
Consider A,B,C to be N-by-N matrices of b-by-b subblocks where           
b= N/m is called the block size 

for i = 1 to N
for j = 1 to N

{read block of C(i,j) into fast memory}
for k = 1 to N

{read block of A(i,k) into fast memory}
{read block of B(k,j) into fast memory}
C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}

{write block C(i,j) back to slow memory}

= + *
C(i,j) C(i,j) A(i,k)

B(k,j)

Work these details out….need it for the project!
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Code Optimization and Compilers
•Modern compilers provide a menu of code optimization 
features

• Inlining, strength reduction, register allocation, loop optimizations, etc.
•Some provide default optimization levels

• Example: gcc -03 test.c

•Bottom Line: Everyone wants to run optimized code
• Being smart with your solution!

• Have we seen everything there is to code optimization?....not 
by a long shot !!

• Lots and lots more optimization techniques
o The “cooler” ones need architecture knowledge
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Example of Code Optimization: 
(Final) Project  6
•Topic: Code Performance Optimization 

• Given code for Image operations, rewrite the code to make it run 
faster.
o Use only techniques covered in class.

•Description will be posted last day of classes and due 
official final exam date:  Thursday Dec. 17th midnight. 

Should take you 6-10 hours to complete
•Involves:

• Code rewriting
• Report writing: summarize your experiments, explain why the 

code ran faster (or slower).
•Very Important: Grade will depend on your analysis –
simply turning in code (with documentation) that runs 
faster will only get you up to 50%
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