Logic Design (Part 3)
Combinational Logic
Devices (Chapter 3 +
Notes)

Based on slides © McGraw-Hill
Additional material © 2013 Farmer
Additional material © 2020 Narahari

Digital Logic Circuits

= we can build the basic logic gates using transistors

= Can build any boolean function using these gates
» Theory underlying design of Boolean functions ..Boolean Algebra
o Optimize circuit using Karnaugh maps
= Power of abstraction....To build boolean functions, you can
work with basic gates — no need to go down to the transistor
level I
= Use these gates as building blocks to build more complex

combinational circuits
» Combinational Logic Devices: Adder, Multiplier, Multiplexer, Decoder,

+ ...any boolean function

Definition: Combinational and Sequential Logic
Circuits
= Acircuit is a collection of devices that are physically
connected by wires
» Combinational circuit
» Sequential circuit
= |In Combinational circuit the input determines output
= |n sequential circuit, the input and the previous ‘state’
(previous values) determine output and next ‘state’

* Need to ‘remember’ previous value — need memory device
» Need circuit to implement concept of storage

Recall our Goal....

= Design a machine that translates from natural language to
electrons running around to solve the problem

* \We now have a device that controls how electrons run around

= Next: we want to build a computer

* First step: Design a collection of logic devices that implement
important functions that will be needed to build our computer

= S/W Analogy: When you write your software, you are using
a collection of concepts, tools, IDEs and libraries
» Each has been built, and tested, for you
« All you have to do is combine them!

Combinational Logic Devices

= We saw how we can build the simple logic gates using
transistors and build any boolean function using these gates

= Use these gates as building blocks to build more complex

combinational circuits

» Decoder: based on value of n-bit input control signal,
select one of 2N outputs

» Multiplexer: based on value of N-bit input control signal,
select one of 2N inputs.

» Adder: add two binary numbers

+ ...any boolean function

= SW Analogy: We are building a library of functions
» To design your solution, you can use any device in the library!

Three Devices we focus on...

N-bit Adder

» Can build Subtract using Adder
Decoder

» Decode a bit string
Multiplexer

* A channel selector

Other useful combinational logic devices
* Multipliers

+ Shifters (but may need storage)

» Comparators (to compare two numbers)

1. N-bit Adder

= Add two N-bit numbers, represented in 2’s complement
= Algorithm (for now): add corresponding bit positions, starting
with least significant position, and propagate the carry bit
leftward.
* In practice: there are faster algorithms
* Big-Oh Analysis:
o To add N bit numbers how ‘far’ will the carry propagate ?

Binary Addition

» Binary addition — just like base 10 (decimal) !
» Add from right to left, propagating carry
« Example using unsigned integers

o Nkd AN
10010 (19 10010 (18) 1111 (5
+ 1001 9 + 1011 tn + 1m

11011 @ 11101 » 10000 5)

Key Observation: We add one bit at a time
therefore, building block is a 1-bit adder
Use 1-bit adder to build N-bit adder!

1-bit Adder

= Two inputs A, B and Two outputs: S
(sum) and Carry out (C)

= Truth table: AlB |S |C
00 |0 |0
011 |1 |0
* Problem? 1 1o 11 o
= This works only for bit 0 where there is 111 o |1
no Carry-in
+ Called a half adder
* In general, we can have a carry-in input,
so 3 inputs are A,B,C;, (carry-in) and 2
outputs S, C,y (carry out)
9
Truth Table for Full-Adder
A B Carry In Out Carry Out
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

10

Truth Table for Full-Adder

A B Carry In Out Carry Out
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1
11
N-bit Adder

= Use the building block of the full-adder to build N-bit adder

* Need to connect carry-out to carry-in of next significant bit

= Example of 4-bit adder using 4 1-bit adders chained
together (ripple carry adder)

A, B, A, B, A, B, A, B,
| | || ||

A B A B A B A B
Full ¢ Full ¢ Full ¢ Full ¢

Adder Adder Adder Adder

C. S C S C S C S

Cout SS SZ S1 SO

12

* Negate B

How about a “subtractor?”

= Build a subtracter from out multi-bit adder
* Calculate A—-B=A+-B

« Recall -B = NOT(B) + 1

16 16
B —\——[>o—-\— +1

Approach#1
Carryln
%
ATX)
Q.
16 a

Approach#2

L e ui Auuea, spm

(1epusiaIoul pasu Jebuoj ou)

¢

Carryln

Question: Can we build a single circuit that can
do either (add or subtract)?

13

The Decoder

the instruction is

o Isitan ADD ora MULT ora GOTOor.....

o each instruction is given a unique encoding & decoder looks at
the encoding and determines which ONE of the instructions the
code corresponds to (i.e, which instruction has to be executed)

* |n S/W, a “case”’/switch statement:
* One of the cases will be evaluated depending on value of ‘input’

= Useful for recognizing a particular bit pattern of 0's and 1’s

= Connection to Computer Organization:
* Program consists of instructions -- coded in binary (0’s and 1’s)
+ We want to look at a bit string for the instruction and determine what

14

int x;

switch(x) {
case
case

case

case

Graham();

Switch (case) statement in C

/* if x=0 call func Kevin */
Kevin(); /* ex: Kevin does add */
break;

/* if x=1 call func Graham */

break;
/* if x=2 call func Sarah */

Sarah(); /* ex: Sarah does AND */

break;

/* if x=3 call func Linnea */
Linnea();
break;

default: printf(”invalid value of x”\n);

break;

15

Outputs

= Schematic:

N-2N Decoder

* N inputs — these represent the binary encoding of the 2N

» Ex: if N=2, then 4 outputs 0,1,2,3, encoded to be ‘switched on’ when
inputs are one of 00, 01, 10, 11 respectively

Out 2N-1
N —>
—_ 2N outputs
inputs —
Out 0

16

Designing a Decoder: Truth table
4 output lines x0,x1,x2,x3 & 2 inputs a1,a0

From truth table, design circuit:
Xo=a4’.aq (i.e., (NOT a;) AND (NOT ag))
Xq= 81,.80 Xo= a1.ao’ X3= aq.dg

aq do Xo X4 X2 X3

0 0 @ 0 0 0
0 1 0 @ 0 0

17

Decoder

A "D— 1, iffA,B is 00 « An n input decoder

has 2" outputs.
"—D— 1, iff A,B is 01
* Output; is 1 iff the

1,iff A,B is 10 - Tim binary value of the n-

bit input is .

1,iffABis 11

» At any time, exactly
one output is 1, all

2-bit decoder others are 0.

(4 input decoder)

18

The Multiplexer - selector

= Multiplexer (MUX) is a device that selects one of the inputs
to be connected to the output

e select
» Similar to a channel selector linput 1
1 output=
Input —’\ channel 1
Channel 1 0 —
' output —
— select
Input | input 0
Channel 0 1
—0—»/ outDUt:

channel 0

This is a 2-1 Multiplexer: Selects one of 2 inputs as the output

19
N-1 Multiplexer
= Multiplexer selects one of the N inputs as the output
* It needs log, N ‘select lines’ to determine which of the N inputs is
selected to appear at the output S=Log N
» Schematic of a MUX: Selectllines
N inputs Output
= Multi-bit muxes
+ Can switch an entire “bus” or group of signals s
+ Switch n-bits with n muxes with the same select bits ¢ :l;z
6\ 16
16 -
Y
20

10

The Multiplexer (MUX) — 2-1 and 4-1 MUX

= Selector/Chooser of signals — imagine Switching Railroad Tracks
* Multi-way switch

2-to-1 Mux 4-to-1 Mux
S=0 1 00 01 10 11
| | 2 2 2 2
A —>\
B — ©
A B c D
S] §1
A 2 °
o .
o>
A, if S=00
- Bjifs=01
Input “S” selects A or B to attach to “O” output G ifS=10
Acts like an “IF/ELSE” statement D,if =11
21
Designing 4-1 MUX Using Logic Gates
MUItlplexer (MUX) * In general, a MUX has
A B C D s .
o 02" data inputs

T S, on select (or control) lines

I
d 1 output.
Cﬁ L.J kJ . Itzzrr:ave:lljilf:a channel selector.

Out= A.S,.S, +B.S,.S,+CS,.S +D.S, .S,

A B C D
Out [S[1:0]
A 4-to-1 MUX:
Out takes the value of A,B, C or D
depending on the value of S (00, 01, 10, 11) Out
Out=Aif S=00 Out=Bif S =01
Out =Cif S=10 Out=D if S=11

22

Designing 4-1 MUX Using Logic Gates

Multiplexer (MUX)

* In general, a MUX has
A B C D

Sy 02" data inputs
I S, on select (or control) lines

I
d 1 output.
Cﬁ LJ kJ . Itzzrr:avelelilf:a channel selector.

Out= A.S,.S, +B.S,.S,+CS,.S +D.S, .S,
A B C D

Out

S[1:0]

A 4-to-1 MUX:

Out takes the value of A,B, C or D
depending on the value of S (00, 01, 10, 11)
Out=Aif S=00 Out=Bif S =01

Out
Out =Cif S=10 Out=D if S=11

23

Example: MUX in a circuit

* Inputs A,,B,C and x (select signal); Output F
Devices/Gates: 2-1 MUX, AND gate

B C

If x=0, output of MUX =B and F=B.C
If x=1, output of MUX=Aand F =A.C
Can write F = xAC + xBC

24

12

Combinational vs. Sequential

=Combinational Circuit

 always gives the same output for a given set of inputs
o ex: adder always generates sum and carry,
regardless of previous inputs

=sSequential Circuit

« stores information

+ output depends on stored information (state) plus input

o so a given input might produce different outputs,
depending on the stored information

« example: vending machine
o Current total increases when you insert coins
o output depends on previous state

« useful for building “memory” elements and “state machines”

25

Next . . Circuits with “memory”

= First we need to build a device that can store a bit
 Using our current ‘library’ of gates
* Building memory follows

» How to model sequential circuits/machines
* Methodology for designing these machines: Finite state machine
* Model as a directed graph

= How to we “synchronize” and "coordinate” the different
pieces in the circuit....enter the CLOCK

= can we use a sequential circuit to “control” how
computations take place in a processor ?

» |s a sequential circuit = Computer ?
+ Limitations of sequential machines..more in Foundations course

26

13

Appendix

27

Binary Arithmetic: Half Adder

= Logical Function: Half Adder, implement Carry Out:

A B |sum c,,
o o] o 0
o 1] 1 0
1 of 1 0
1 1| o 1

j— 0

Half Adder’s Logic Function:

A HA Sum sUM=((A’ AND B’) OR (AAND B))
C=((A AND B’) OR (A’ AND B) OR (AAND B’) ¥
Realize though: C= (A AND B), this isn’t always best way!

CarryOut (Coy)

28

Addition: Full Adders

= There is a limit with the half adder
* It can’t implement multiple-bit addition

B
| 1 —A
A HA Sum + 1—B
10—
CarryOut (Coy) Cout—"" Sum
« It works for “least significant bit,” but won’t work for the next
Carryln Cin —— 1
A A—11
B FA —Sum B—= 11
CarryOut Cout —_>(1) 10\) Sum
* We need an adder that has 3 inputs and 2 outputs 3-29
29
Truth Table
A B Carry In Out Carry Out
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

30

15

Full Adder

SUM-OUT

31

1-bit Full Adder

sAdd two bits and carry-in,

oul

produce one-bit sum and carry-out. A B Cin|S Cou
A B 00 0|0 O
00 1|1 0
(L T I] C, 01 01 0
01 1]0 1
10 1[0 1
11 0[0 1
11 1(1 1
Cou

32

16

N-bit Adder
Carryln

Carryln
16
Carrylng A __" 6
Ao > + S
16
BO Add SO B \
CarryOuty
Carryln, CarryOut
A
B1 Add S1
CarryOut, CarryOut: useful for
Carryln, .
A, detecting overflow
82 Add SZ
CarryOut, Carryln: assumed to be
. zero if not present
3-33
33
Four-bit Adder
A, B, A, B, A, B, A, B,
|| | || ||
A B A B A B A B
Full ¢ Full ¢ Full ¢ Full ©c.—0
Adder Adder Adder Adder
Co S C S Co S Co S
Cout SS SZ S1 SO

34

17

A multi function Arithmetic Unit

= |n a CPU, we'd like to do BOTH addition and subtraction

» Can we give the CPU the ability to choose between two pieces of
hardware?

* Yes!
= Using a MUX to build a multifunction ALU

35

Building an ALU using MUX
Adder/Subtracter - Approach #1

Adder Subtracter
Carryln
% 1 Carryln
A —\—.. 6 y

A
16 S .
B —\—»
B
CarryOut
16 Adder/Subtracter
\ Add/Sub If Add/Sub = 0 then Add
AT 16 If Add/Sub=1 then Sub
16 >) 1
B - 16 .
16
16 ——

36

18

Adder/Subtracter - Approach #2 (Optimize HW)
Adder Subtracter
Carryln

% 1 Carryln
A "_’ 6 y
) S A
16 S
B 4~ 5
CarryOut
Adder/Subtracter
1
Add/Sub—}
1(\5 Carryln
A
16‘ 0 S
B - | 16

37

Analysis of Circuits

= Download Example Circuits
* In Cedar Logic: Set2.cdl
* In Logisim: Set2.zip
o Contains multiple files, titled Set2-Page1, Set2-Page2, etc.
o Pages correspond to pages in the Set2.cdl file

38

19

Analysis of circuits in file: Set2

Page 1: Check truth table and identify behavior

Page 2: Part of the circuit looks identical to Page1, but there is an
additional ‘output.

» Check truth table and identify behavior

Page 3: This uses the circuit from Page2 and connects them (connects
output of one circuit to input of next circuit).

« Identify the function being implemented

Page 4: If we treat 1-bit Adders as a Combinational logic device, then
we can construct any N-bit adder using these devices

+ Bottom of the page has a schematic for a 4-bit adder

* Input uses a Hex keyboard to input a 4-bit number

+ Uses a 7 segment LED display to display the 4-bit output as a hex number.
* Analogy with software design: Construct solution which utilizes functions

39

Analysis of circuits in file: Set2

Page 5: Uses an adder, but adds some logic operations to the input X
before it is sent to the Adder: Therefore adding Y and f(X) to get output Z
* Inputs use Hex keyboards to send in 4-bit numbers
« Determine what is f(x) and then determine what function is being implemented.
Page 6: Examples of Multiplexer and Decoder
Page 7: Circuit uses a multiplexer and gates
+ As you set the different select lines to the multiplexer, determine what the output is
» Determine the behavior of the circuit and its ‘function’

Page 8: Circuit uses Multiplexer, Adder

* Check truth table and identify behavior

Page 9: Uses Decoder and Multiplexer

+ Determine values of select lines of multiplexer based on output of decoder
Page 10: Example using a comparator

40

20

