
1

Logic Design (Part 2)
Combinational Logic
Circuits (Chapter 3 +
Notes)

Based on slides © McGraw-Hill
Additional material © 2004/2005/2006 Lewis/Martin

Additional material © 2008 Roth
Additional material © 2010 Taylor

Additional material © 2013 Farmer
Additional material © 2018 Narahari

1

Next
§ Download Set1 of Cedar Logic or LogiSim examples

• From lectures webpage
§ Designing combinational logic circuits

• Cedar Logic or LogiSim
§ Intro to Combinational logic devices

• Building complex devices using the basic gates
• Adders, Multiplexers, Decoders,…..

2

2

Digital Logic Design – Introduction
§MOS transistors used as switches to implement
basic logic gates (boolean operations)

• (NAND, NOT, AND, OR,..).
§ Boolean logic functions operate on boolean variables

• expressed with AND, OR, and NOT
• (A AND B) OR (NOT A AND C)

oAND, OR, NOT notation replaced by . + ‘
o(A.B) + (A’ . C)

§Boolean function represented as:
•Truth table
• logic circuit

3

Digital Logic Circuits
§ We saw how we can build the simple logic gates using

transistors
§ Can build any boolean function using these gates
§ Use these gates as building blocks to build more complex

combinational circuits
• Multiplier, Multiplexer, Decoder, …..
• …any boolean function

§ Develop a theoretically sound approach to designing
boolean functions and circuits….Boolean Algebra

4

3

Definition: Combinational and Sequential Logic
Circuits
§ A circuit is a collection of devices that are physically

connected by wires
• Combinational circuit
• Sequential circuit

§ In Combinational circuit the input determines output
§ In sequential circuit, the input and the previous ‘state’

(previous values) determine output and next ‘state’
• Need to ‘remember’ previous value – need memory device
• Need circuit to implement concept of storage

§ Start with design of Combinational Logic circuits

5

Boolean Function..Recall from Discrete Math!
§ Output(s) is a function on input boolean variables
§ z = f(x,y,…)
§ x,y are boolean variables (0 or 1)
§ z=f(x,y) is a boolean output
§ The “operators” used are any of the boolean logic operators

• AND, OR, NOT, NAND, etc.
§ If integers are represented using binary notation, then all

functions over integers are boolean functions
§ How do we represent boolean functions?

6

4

Boolean Functions
• A function can be thought of as a mapping from

inputs to outputs.
o Think of a black box with n binary inputs and

1 binary output
• We can express the action of this function in

terms of a truth table which says what the output
should be for every input pattern.

• This function implements a binary adder!

A B C S
0 0 0 0
0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1
Func S

A

C

B

Truth table
(describes behavior)

Block Diagram

7

Boolean Algebra
§ George Boole – Famous Mathematician/Logician

o Boolean Algebra – branch of Algebra, where variables can only
have values of true (1) or false (0)

o Boolean operators: AND(.), OR(+), NOT(~ or !)
§ With Boolean Algebra:

o We create “functions” using boolean variables and operators
o Any logical function can be expressed in terms of the three

elementary operations: AND, OR and NOT
o Boolean functions can be rearranged and sometimes simplified by

applying algebraic identities
o DeMorgan’s laws: allow conversion from AND to OR (using NOT)

§ Big idea – you can write a logical function as a boolean
algebraic expression and then use various identities to
rewrite that function in an equivalent (usually simpler) form.

8

5

A note on De-Morgan’s Law
§ Where have you seen this before ?

• In a different context ?
§ Set operations: Union, Intersect, Comp.

• (Ac ∪ Bc) = (A ∩ B)c

• (Ac ∩ Bc) = (A ∪ B)c

§ De-Morgan’s law applies to any boolean algebra
• With corresponding operations:

o Union = OR
o Intersect = AND

9

DeMorgan's Law: Converting AND to OR with help
from NOT

§ NOT(A AND B) = (NOT A) OR (NOT B);

§ NOT(A OR B) = (NOT A) AND (NOT B);

§ In C syntax: ~(A&B) = ~A|~B ~(A|B) = ~A&~B

A B ~A ~B ~A&~B (A&B) ~A|~B (A|B) ~(A|B) ~(A&
B)

0 0 1 1 1 0 1 0 1 1

0 1 1 0 0 0 1 1 0 1

1 0 0 1 0 0 1 1 0 1

1 1 0 0 0 1 0 1 0 0

10

6

DeMorgan's Law
§Converting AND to OR (with some help from NOT)
§Consider the following gate:

A B
0 0 1 1 1 0
0 1 1 0 0 1
1 0 0 1 0 1
1 1 0 0 0 1

BA ×BA BA ×

Same as A+B

To convert AND to OR
(or vice versa),

invert inputs and output.

From DeMorgan’s laws:
NOT ((NOT A) AND (NOT B))=
NOT (NOT A) OR NOT(NOT B)=

A OR B

11

Representation of Boolean Logic Functions
²A logic function can be represented as

1. a truth table or
2. a logic expression or
3. a logic circuit

²Example
.ca a.d a.b.c .c a d) a.(b.c f ++=++=

11111
10111
11011
00011
11101
00101
11001
00001
11110
10110
01010
00010
11100
1
0
0
f

0100
1000
0000
dcba

b
a

c

d f

12

7

Completeness: Very Important Concept
§ It can be shown that any truth table (i.e. any binary function of

binary variables) can be reduced to combinations of the AND &
NOT functions, or of the OR & NOT functions.

• This result extends also to functions of more than two variables
§ In fact, it turns out to be convenient to use a basic set of three

logic gates:
• AND, OR & NOT or NAND, NOR & NOT

• In fact, can implement all logic functions using just NAND!

§ Question to ask: How do we design a good circuit ?

13

Truth Tables to Boolean Function/Circuits
§ A truth table can be mapped to a Boolean function

• In Disjunctive Normal Form (DNF) – an OR of AND terms
o Recall from Discrete 1 (CS1311)

§ Each row in the truth table corresponds to a conjunction of
literals (i.e., Boolean variables) and is called minterm
• Literal is Boolean variable A or its complement A’

§ To derive the Boolean function F:
• Examine each row where the output = 1

o Include this conjunctive term as an AND of the literals
• F = OR of the included terms (minterms)

o Also called sum of products (OR of minterms)

14

8

Truth Tables to Boolean Function
§ Input variables: A,B,C (Notation: NOT A written as A’)
§ Output = F
§ First examine rows where F=1
§ F=1 when A=0 B=1 C=0

• bool func is (A’ AND B AND C’)
§ F=1 when A=1 B=0 C=0

• bool func is (A AND B’ AND C’)
§ F=1 when A=1 B=1 C=0

• bool func is (A AND B AND C’)
§ F=0 on all other input combinations
§ Write F as OR of above minterms
§ F= (A’.B.C’) OR (A.B’.C’) OR (A.B.C’)

A B C F
0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 0

15

Boolean functions, Circuits & Boolean Algebra!
§Power of abstraction….To build boolean functions, you can work with
basic gates..no need to go down to the transistor level !!
§ what is the theory behind boolean logic design ?

§ Boolean Algebra
o DeMorgan’s Law: Convert AND&NOT to OR&NOT

– (NOT A) AND (NOT B) = NOT (A OR B) (i.e., A NOR B)
– (NOT A) OR (NOT B) = NOT (A AND B) (i.e, A NAND B)

o Disjunctive Normal Form (DNF), etc.
§ Question: How can we design an “efficient” circuit to implement a

Boolean function ?
• “efficient” = minimum number of logic gates

§ Example:
• Given F= A’BC’ + A’B’C + ABC’ + AB’C : 4 AND gates & OR gate
• From Bool Alg., this is equivalent to F = BC’ + B’C: 2 AND gates & 1 OR gate

16

9

Boolean Algebra and Combinational Logic Design
§ Boolean Logic is a Boolean Algebra

• laws of Boolean Algebra can be applied
§ How do we design “efficient” circuits ? Is there a

methodology we can follow ?
• Boolean algebra (Karnaugh Maps)

• Again, recall from CS1311 Discrete 1 !

§Reading Assignment: Review Boolean algebra and

Karnaugh Maps concepts and application to digital logic design

• Notes posted on website

17

How to design combinational circuit
§ Analyze the problem

• Determine inputs and outputs (they must be binary)
§ Determine boolean variables

• inputs x1,x2,…
• Outputs y1, y2,…

§ Derive truth table
• Value of each yi for each combination of inputs x1,x2,…

§ For simple circuit, find DNF from truth table
§ To find ‘optimal’ (minimum size) 2-level circuit, derive

Karnaugh map and find terms

18

10

Time to test your circuit design&analysis skills…
Analyze Circuits to derive Boolean functions
Design circuits from truth table/function
§ In Cedar Logic: Download and open Set1.cdl in CedarLogic

• Has number of ‘pages’ of circuits
§ In Logisim: Download Set1.zip into folder, it has several

Logisim circuits
• Labelled Set1-Page1.circ, Set1-Page2, etc.
• Open in Logisim

§ Work through the 6 pages of circuits

19

Transistor Circuits…Circuits on Page 1,2,3,4….
§ Open in Cedar Logic – view Page 1 circuit
§ UsefulTip (for CedarLogic): Hit space key to center and

maximize the circuit in the cedar logic window
§ Circuit on Page 1 is NAND gate (from transistors)

• Inputs: A,B . can be set to 1 (red) or 0 (black) by clicking on them
• Output C=1 if at least one of upper two (switches) close

o This happens when A=0 or B=0 since it is a P-type transistor
• Output C=0 when A=1 and B=1 since there is a path from C to ground

(0) and N type transistor
§ Transistors at bottom of page

• N-type: if input is 1 (red) then transistor close (i.e., short circuit)
• P-type: if input is 0 (black) then transistor closed (i.e, short circuit)

20

11

Questions…Circuit on Set1-Page2, Page3, Page4
§ Page 2: What gate/function is being implemented?

• Can you determine this by analyzing the circuit (instead of deriving
truth table)

• Note serial structure in upper two transistors = both must close for a
path from Power to output, i.e., for output to be = 1

• Note parallel structure in lower two transistors = at least one must be
closed for a path from Ground (0) to output, i.e., for output =0

§ Page 3: combination of Page 2 circuit whose output goes to
another circuit

§ Page 4: What function ? Derive truth table with inputs A,B
and ‘outputs’ C,D, F
• Is this a standard function ?

21

Circuits with logic gates…Set1 - Pages 5,6,7,8
§ Page 5: example using logic gates
§ Input specified using the switches
§ Output goes to LED (red=1, black=0)
§ To determine the function being implemented by a circuit

you can “trace” back from output to inputs

22

12

Questons: Pages 6, 7, 8:
§ Page 6: what Boolean functions are

being implemented by circuits (a)
and (b) ?

§ Page 7: Draw circuit to implement
the function:
• F= (A AND (B XOR C) OR (NOT C))
• Draw by hand first, then implement in

simulator
§ Page8: Design circuit for truth table

shown here
• Derive function and draw by hand first

o Implement in simulator

A B C F
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

23

Logic control for overhead light
§ Design logic for light switch in a room based on the position

of two switches – switches are at two different entrances to
the room and either switch should be able to change the
state (on/off) of the light independently.
• If both switches are in the “down” position (represented by 0) the light

must be off (represented by 0)
• No matter what position the switches are in or the current state of the

light, flipping either switch must change the state of the light.

• Design gate level circuit
• Complete truth table first

24

13

Recall our Goal….
§ Design a machine that translates from natural language to

electrons running around to solve the problem

• We now have a device that controls how electrons run around
§ Next: we want to build a computer

• First step: Design a collection of logic devices that implement
important functions that will be needed to build our computer

§ S/W Analogy: When you write your software, you are using
a collection of concepts, tools, IDEs and libraries
• Each has been built, and tested, for you
• All you have to do is combine them!

25

Next: Combinational Logic Devices
§ We saw how we can build the simple logic gates using

transistors
§ Can build any boolean function using these gates
§ Use these gates as building blocks to build more complex

combinational circuits
• Decoder: based on value of n-bit input control signal,

select one of 2N outputs
• Multiplexer: based on value of N-bit input control signal,

select one of 2N inputs.
• Adder: add two binary numbers
• …any boolean function

§ SW Analogy: We are building a library of functions
• To design your solution, you can use any device in the library!

26

