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LC3 Architecture:
LC3 Instruction Set 
Architecture (ISA)

(Chapter 4,5)
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What is the Hardware/Software 
Interface ?...ISA

instruction set

software

hardware
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ISA: Types of Instruction

• 1. Operate Instructions
o process data (addition, logical operations, etc.)

• 2. Data Movement Instructions …
o move data between memory locations and registers.

• 3. Control Instructions …
o change the sequence of execution of instructions in the stored 

program.
§ The default is sequential execution: the PC is incremented by 1 at the start of every 

Fetch, in preparation for the next one.
§ Control instructions set the PC to a new value during the Execute phase, so the next 

instruction comes from a different place in the program.
§ This allows us to build control structures such as loops and branches.
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Instruction Cycle

• Six phases of the complete Instruction Cycle

o Fetch: load IR with instruction from memory

o Decode: determine action to take (set up inputs for ALU, RAM, etc.)

o Evaluate address: compute memory address of operands, if any

o Fetch operands: read operands from memory or registers

o Execute: carry out instruction

o Store results: write result to destination (register or memory)
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Changing the Sequence of 
Instructions

•In the FETCH phase, we increment the Program Counter by 
1.
•What if we don’t want to always execute the instruction that 
follows this one?

o examples: loop, if-then, function call
•Need special instructions that change the contents  of the 
PC.
•These are called control instructions.

o jumps are unconditional -- always change the PC
o branches are conditional -- change the PC only if

some condition is true (e.g., the result of an ADD is zero)
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LC3 Instruction Set Architecture

• The Instruction set architecture (ISA) of the LC3
o How is each instruction implemented by the control and 

data paths in the LC3
o Programming in machine code
o How are programs executed

§ Memory layout, programs in machine code

• Overview of LC3 microarchitecture
o How are components connected to build the LC3 

processor
§ read Appendix C in detail – required to complete processor design

• Assembly programming
o Assembly and compiler process
o Assembly programming with simple programs
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LC-3 Overview: Memory and 
Registers

•Memory
o address space: 216 locations (16-bit addresses)
o addressability: 16 bits

•Registers
o temporary storage, accessed in a single machine cycle

§ accessing memory generally takes longer than a single cycle

o eight general-purpose registers: R0 - R7
§ each 16 bits wide
§ how many bits to uniquely identify a register?

o other registers
§ not directly addressable, but used by (and affected by) instructions
§ PC (program counter), condition codes

7

8

LC-3 Overview: Instruction Set

•Opcodes
o 15 opcodes
o Operate instructions: ADD, AND, NOT
o Data movement instructions: LD, LDI, LDR, LEA, ST, STR, STI
o Control instructions: BR, JSR/JSRR, JMP, RTI, TRAP
o some opcodes set/clear condition codes, based on result:

§ N = negative, Z = zero, P = positive (> 0)

•Data Types
o 16-bit 2’s complement integer

•Addressing Modes
o How is the location of an operand specified?
o non-memory addresses: immediate, register
o memory addresses: PC-relative, indirect, base+offset
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0001 DR SR1 0 00 SR2ADD+

0101 DR SR1 0 00 SR2AND+

0001 DR SR1 1 imm5ADD+

0101 DR SR1 1 imm5AND+

0000 n z p PCoffset9BR

1100 000 BaseR 000000JMP

0100 1 PCoffset11JSR

JSRR 0100 0 00 BaseR 000000

LD+ 0010 PCoffset9DR

LDI+ 1010 PCoffset9DR

+ Indicates instructions that modify condition codes
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1000 000000000000RTI

1111 0000 trapvect8TRAP

offset60110 DRLDR+ BaseR

PCoffset91110LEA+ DR

1001 111111NOT+ DR SR

1100RET 000 111 000000

0011 SRST PCoffset9

1011STI SR PCoffset9

0111 BaseRSTR SR offset6

1101reserved

+ Indicates instructions that modify condition codes
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Operate Instructions

•Only three operations: ADD, AND, NOT
•Source and destination operands are registers

o These instructions do not reference memory.
o ADD and AND can use “immediate” mode,

where one operand is hard-wired into the instruction.
•dataflow diagram associated with each instruction.

o illustrates when and where data moves 
to accomplish the desired operation

o used to design the datapath
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Operate Instructions

• NOT

• Addressing mode?
o Where are the operands
o DR and SR specify the register number/address

§ 3 bits needed to specify address of 8 registers

1001 111111NOT+ DR SR
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NOT (Register)

Note: Src and Dst
could be the same register.

Must be all 1’s in bits [0:5]

If Dst=010, Src=101 
R2 = NOT(R3)
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Specifying instruction semantics

• Is there a formal way to specify the 
transfers/controls needed to implement each 
instruction ?
o The register transfers needed.

• Is there a formal language 
o Can you specify these transfers by writing a program 

• Hardware Description Languages (HDL)
o Verilog, VHDL, …
o Processor design and specification today is done using a

HDL
§ Use software to design hardware!

• Data flow and timing
o Data transfers labelled at each step/cycle

§ What transfers and between which devices at each cycle
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Operate Instructions

• ADD, AND

• Addressing Mode?
o Where are the operands
o Two modes: (1) register and (2) immediate value

0001 DR SR1 0 00 SR2ADD+

0101 DR SR1 0 00 SR2AND+

0001 DR SR1 1 imm5ADD+

0101 DR SR1 1 imm5AND+
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ADD/AND (Register)
this zero means “register mode”

ADD:
Dst= Src1 + Src2

R2= R1 + R3

AND:
Dst= Src1 AND Src2

R2 = R1 AND R3

If Dst=010, Src1=001, Src2=011 
Register mode:

Operands are in registers

16
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ADD/AND (Immediate)

Note: Immediate field is
sign-extended.

this one means “immediate mode”

If Dst=010, Src1=001, Imm5=00011
ADD R2,R1,#3

R2 = R1 +3

Immediate mode:
One Operand in inst
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Data Movement Instructions

LD+ 0010 PCoffset9DR

LDI+ 1010 PCoffset9DR

offset60110 DRLDR+ BaseR

PCoffset91110LEA+ DR

0011 SRST PCoffset9

1011STI SR PCoffset9

0111 BaseRSTR SR offset6

18
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Data Movement Instructions

• GPR ↔ Memory

• GPR ↔ I/O Devices

• GPR ← Memory ???

• Memory ← GPR ???
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Addressing Modes

• Where can operands be found?

If in memory, how to compute the address where the 
operand/variable is stored ?

• Manner in which address is computed leads to 
three different types of Load/Store instructions

20
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Basic Format

0010 Address generation bitsDR or SR

These encode inform
atio

n on 

how to
 fo

rm
 a 16 bit address

DR is register into which memory contents are read (Load)
SR contains data that has to be written into memory (Store)
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Data Movement Instructions
•Load -- read data from memory to register

o LD: PC-relative mode
o LDR: base+offset mode
o LDI: indirect mode

•Store -- write data from register to memory
o ST: PC-relative mode
o STR: base+offset mode
o STI: indirect mode

•Load effective address -- compute address, 
save in register

o LEA: immediate mode
o does not access memory

22
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PC-Relative Addressing Mode

•Want to specify address directly in the instruction
o But an address is 16 bits, and so is an instruction!
o After subtracting 4 bits for opcode

and 3 bits for register, we have 9 bits available for address.
•Solution:

o Use the 9 bits as a signed offset from the current PC.

•9 bits:
•Can form any address X, such that: 

•Remember that PC is incremented as part of the FETCH phase;
•This is done before the EVALUATE ADDRESS stage.

255offset256 +££-
255PCX256PC +££-

23

LD (PC-Relative)
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LD – Load PC-relative Addressing

• Suppose instruction is 
0010011000000010

• This instruction is stored at 
address (decimal) 4999

• Ques: What is the result of this 
instruction ?

500

2000
5000
5001
5002

1200

Address        Memory
contents

5001

400

25

ST (PC-Relative)
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Indirect Addressing Mode

•With PC-relative mode, can only address data within 
256 words of the instruction.

Ø What about the rest of memory? 
•Solution #1: 

Ø Read address from memory location,
then load/store to that address.

•First address is generated from PC and IR
(just like PC-relative addressing), then
content of that address is used as target for load/store.

Ø analogy to pointers

27

LDI (Indirect)
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Load Indirect

• Suppose instruction is 
1010011000000010

• This instruction is stored at 
address (decimal) 4999

• What is the result of this 
instruction ?

500

2000
5000
5001
5002

1200

Address        Memory
contents

5001

400

29

STI (Indirect)

30
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Base + Offset Addressing Mode

•With PC-relative mode, can only address data 
within 256 words of the instruction.

o What about the rest of memory?
•Solution #2:

o Use a register to generate a full 16-bit address.
•4 bits for opcode, 3 for src/dest register,
3 bits for base register -- remaining 6 bits are used as 
a signed offset.

o Offset is sign-extended before adding to base register.

31

LDR (Base+Offset)

32
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Load Register

• Suppose instruction is 
0110011010000010

• This instruction is at address 
4999

• Suppose Register R2 contains 
the decimal value 5000

• What is the result ?

500

2000
5000
5001
5002

1200

Address        Memory
contents

1200

400

33

STR (Base+Offset)

34
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Load Effective Address

•Computes address like PC-relative (PC plus signed 
offset) and stores the result into a register.

•Note: The address is stored in the register,
not the contents of the memory location.
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LEA (Immediate)
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Example

Address Instruction Comments

x30F6 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 LEA

x30F7 0 0 0 1 0 1 0 0 0 1 1 0 1 1 1 0 ADD imm5.

x30F8 0 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1 ST

x30F9 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 AND imm5

x30FA 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 ADD imm5

x30FB 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 0 STR

x30FC 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1 LDI

opcode
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Example

Address Instruction Comments

x30F6 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 R1 ¬ PC – 3 = x30F4

x30F7 0 0 0 1 0 1 0 0 0 1 1 0 1 1 1 0 R2 ¬ R1 + 14 = x3102

x30F8 0 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1 M[PC - 5] ¬ R2
M[x30F4] ¬ x3102

x30F9 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 R2 ¬ 0

x30FA 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 R2 ¬ R2 + 5 = 5

x30FB 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 0 M[R1+14] ¬ R2
M[x3102] ¬ 5

x30FC 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1
R3 ¬ M[M[x30F4]]

R3 ¬ M[x3102]
R3 ¬ 5

opcode

38
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Control Instructions

•Used to alter the sequence of instructions
(by changing the Program Counter)
•Conditional Branch

o branch is taken if a specified condition is true
§ signed offset is added to PC to yield new PC

o else, the branch is not taken
§ PC is not changed, points to the next sequential instruction

•Unconditional Branch (or Jump)
o always changes the PC

•TRAP
o changes PC to the address of an OS “service routine”
o routine will return control to the next instruction (after TRAP)

39
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Control Instructions

0000 n z p PCoffset9BR

1100 000 BaseR 000000JMP

0100 1 PCoffset11JSR

JSRR 0100 0 00 BaseR 000000

1000 000000000000RTI

1111 0000 trapvect8TRAP

1100RET 000 111 000000

40
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Condition Codes

•LC-3 has three condition code registers:
N -- negative
Z -- zero
P -- positive (greater than zero)

•Set by any instruction that writes a value to a register
(ADD, AND, NOT, LD, LDR, LDI, LEA)

•Exactly one will be set at all times
o Based on the last instruction that altered a register
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Branch Instruction

•Branch specifies one or more condition codes.
•If the set bit is specified, the branch is taken.

o PC-relative addressing:
target address is computed by adding signed offset (IR[8:0])
to current PC.

o Note: PC has already been incremented by FETCH stage.
o Note: Target must be within 256 words of BR instruction.

•If the branch is not taken,
the next sequential instruction is executed.
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BR (PC-Relative)

What happens if bits [11:9] are all zero?  All one?

43
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Using Branch Instructions

•Compute sum of 4 integers.
Numbers start at location x3100.  Program starts at location 
x3000.

o Add numbers from location x3100 to x311B
o Store first address in R2
o R4 has “counter” – counts down from 4 to 0
o R1 will store the running Sum

44
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R2 <- x3100
R1 <- 0
R4 <- 4 

R4 = 0 ?

R3 <- M[R2]
R1 <- R1 + R3
Increment R2
Decrement R4

NO

YES

Flow Chart for
the program Set R2 to point to x3100

Initialize R1=0 and R4=4
(R4 is a counter)

Load contents at address in R2
Into register R3, add to
Running sum in R1
Decrement counter R4
Increment ‘pointer’ in R2

Set check if count=0,
If R4=0 exit loop

45

Program

x3000 R2 <- x3100
x3001 R4 <- 0
x3002 R1 <- 0
x3003 R4 <- 4

x3004 BRz x300A /* if R4=0 exit loop */
x3005 R3 <- M[R2]
x3006 R1 <- R1 + R3
x3007 R2 <- R2 + 1

x3008 R4 <- R4 - 1
x3009 BRnzp x3004. /* repeat loop */
x300A Halt /* end of loop */

46
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Program

x3000 R2 <- x3100
x3001 R1 <- 0

x3002 R4 <- 0
x3003 R4 <- 12

x3004 BRz x300A
x3005 R3 <- M[R2]
x3006 R1 <- R1 + R3

x3007 R2 <- R2 + 1
x3008 R4 <- R4 - 1

x3009 BRnzp x3004

LEA   1110010011111111
AND   0101001011100000

AND   0101100010100000
ADD   0001100010100100

BRz 0000010000000101
LDR   0110011010000000
ADD   0001001001000011

ADD   0001010010100001
ADD   0001100100111111

BRnzp 0000111111111010

opcode

dest
source

Immediate 
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JMP (Register)

•Jump is an unconditional branch -- always taken.
o Target address is the contents of a register.
o Allows any target address.

48
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TRAP Instruction

• Modern computers contain hardware and software 
protection schemes to prevent user programs from 
accidentally (or maliciously) interfering with proper 
system function.

• Suffice it to say, we need a way to communicate 
with the operating system
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TRAP

•Calls a service routine, identified by 8-bit “trap vector.”

•When routine is done, 
PC is set to the instruction following TRAP.
•(We’ll talk about how this works later.)

vector routine
x23 input a character from the keyboard
x21 output a character to the monitor
x25 halt the program

50
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The LC-3 ISA: summary

• 16 bit instructions and data
• 2’s complement data type
• Operate/ALU instructions: ADD, NOT, AND
• Data movement Inst: Load and Store

o Addressing mode: PC-relative, Indirect, 
Register/Base+Offset,Immediate

• Transfer of control instructions
o Branch – using condition code registers
o Jump – unconditional branch
o Traps, Subroutine calls – discuss later

• Now we look at the LC3 datapath and controller 
design
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Taking stock: what we have now

• Datatypes of machines: Number Representation
o 2’s complement integers, Floating point
o Arithmetic on 2’s complement
o Logic operations

• Digital logic: devices to build the circuits
o CMOS transistor is the starting point
o Basic logic gates: AND, OR, NOT, NAND, etc.
o Combinational logic ‘blocks’: MUX, Decoder, PLA
o Sequential Logic: storage element, finite state machines
o Putting it all together to build a simple processor- LC3

• Von Neumann Model of computing
• Instruction set architecture (ISA) of LC3

o Instructions of a processor – how program execution takes place
o Addressing modes to data movement, branches, operations
o Encoding an LC3 instruction

• Next question: how to program the processor 
o Using instructions in the ISA
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