
1

Based on slides © McGraw-Hill
Additional material © 2013 Farmer

Additional material © 2020 Narahari

LC3 Architecture:
LC3 Instruction Set 
Architecture (ISA)

(Chapter 4,5)

1

2

What is the Hardware/Software 
Interface ?...ISA

instruction set

software

hardware

2



2

3

ISA: Types of Instruction

• 1. Operate Instructions
o process data (addition, logical operations, etc.)

• 2. Data Movement Instructions …
o move data between memory locations and registers.

• 3. Control Instructions …
o change the sequence of execution of instructions in the stored 

program.
§ The default is sequential execution: the PC is incremented by 1 at the start of every 

Fetch, in preparation for the next one.
§ Control instructions set the PC to a new value during the Execute phase, so the next 

instruction comes from a different place in the program.
§ This allows us to build control structures such as loops and branches.

3

4

Instruction Cycle

• Six phases of the complete Instruction Cycle

o Fetch: load IR with instruction from memory

o Decode: determine action to take (set up inputs for ALU, RAM, etc.)

o Evaluate address: compute memory address of operands, if any

o Fetch operands: read operands from memory or registers

o Execute: carry out instruction

o Store results: write result to destination (register or memory)

4



3

5

Changing the Sequence of 
Instructions

•In the FETCH phase, we increment the Program Counter by 
1.
•What if we don’t want to always execute the instruction that 
follows this one?

o examples: loop, if-then, function call
•Need special instructions that change the contents  of the 
PC.
•These are called control instructions.

o jumps are unconditional -- always change the PC
o branches are conditional -- change the PC only if

some condition is true (e.g., the result of an ADD is zero)

5

6

LC3 Instruction Set Architecture

• The Instruction set architecture (ISA) of the LC3
o How is each instruction implemented by the control and 

data paths in the LC3
o Programming in machine code
o How are programs executed

§ Memory layout, programs in machine code

• Overview of LC3 microarchitecture
o How are components connected to build the LC3 

processor
§ read Appendix C in detail – required to complete processor design

• Assembly programming
o Assembly and compiler process
o Assembly programming with simple programs

6



4

7

LC-3 Overview: Memory and 
Registers

•Memory
o address space: 216 locations (16-bit addresses)
o addressability: 16 bits

•Registers
o temporary storage, accessed in a single machine cycle

§ accessing memory generally takes longer than a single cycle

o eight general-purpose registers: R0 - R7
§ each 16 bits wide
§ how many bits to uniquely identify a register?

o other registers
§ not directly addressable, but used by (and affected by) instructions
§ PC (program counter), condition codes

7

8

LC-3 Overview: Instruction Set

•Opcodes
o 15 opcodes
o Operate instructions: ADD, AND, NOT
o Data movement instructions: LD, LDI, LDR, LEA, ST, STR, STI
o Control instructions: BR, JSR/JSRR, JMP, RTI, TRAP
o some opcodes set/clear condition codes, based on result:

§ N = negative, Z = zero, P = positive (> 0)

•Data Types
o 16-bit 2’s complement integer

•Addressing Modes
o How is the location of an operand specified?
o non-memory addresses: immediate, register
o memory addresses: PC-relative, indirect, base+offset

8



5

9

0001 DR SR1 0 00 SR2ADD+

0101 DR SR1 0 00 SR2AND+

0001 DR SR1 1 imm5ADD+

0101 DR SR1 1 imm5AND+

0000 n z p PCoffset9BR

1100 000 BaseR 000000JMP

0100 1 PCoffset11JSR

JSRR 0100 0 00 BaseR 000000

LD+ 0010 PCoffset9DR

LDI+ 1010 PCoffset9DR

+ Indicates instructions that modify condition codes

9

10

1000 000000000000RTI

1111 0000 trapvect8TRAP

offset60110 DRLDR+ BaseR

PCoffset91110LEA+ DR

1001 111111NOT+ DR SR

1100RET 000 111 000000

0011 SRST PCoffset9

1011STI SR PCoffset9

0111 BaseRSTR SR offset6

1101reserved

+ Indicates instructions that modify condition codes

10



6

11

Operate Instructions

•Only three operations: ADD, AND, NOT
•Source and destination operands are registers

o These instructions do not reference memory.
o ADD and AND can use “immediate” mode,

where one operand is hard-wired into the instruction.
•dataflow diagram associated with each instruction.

o illustrates when and where data moves 
to accomplish the desired operation

o used to design the datapath

11

12

Operate Instructions

• NOT

• Addressing mode?
o Where are the operands
o DR and SR specify the register number/address

§ 3 bits needed to specify address of 8 registers

1001 111111NOT+ DR SR

12



7

13

NOT (Register)

Note: Src and Dst
could be the same register.

Must be all 1’s in bits [0:5]

If Dst=010, Src=101 
R2 = NOT(R3)

13

14

Specifying instruction semantics

• Is there a formal way to specify the 
transfers/controls needed to implement each 
instruction ?
o The register transfers needed.

• Is there a formal language 
o Can you specify these transfers by writing a program 

• Hardware Description Languages (HDL)
o Verilog, VHDL, …
o Processor design and specification today is done using a

HDL
§ Use software to design hardware!

• Data flow and timing
o Data transfers labelled at each step/cycle

§ What transfers and between which devices at each cycle

14



8

15

Operate Instructions

• ADD, AND

• Addressing Mode?
o Where are the operands
o Two modes: (1) register and (2) immediate value

0001 DR SR1 0 00 SR2ADD+

0101 DR SR1 0 00 SR2AND+

0001 DR SR1 1 imm5ADD+

0101 DR SR1 1 imm5AND+

15

ADD/AND (Register)
this zero means “register mode”

ADD:
Dst= Src1 + Src2

R2= R1 + R3

AND:
Dst= Src1 AND Src2

R2 = R1 AND R3

If Dst=010, Src1=001, Src2=011 
Register mode:

Operands are in registers

16



9

ADD/AND (Immediate)

Note: Immediate field is
sign-extended.

this one means “immediate mode”

If Dst=010, Src1=001, Imm5=00011
ADD R2,R1,#3

R2 = R1 +3

Immediate mode:
One Operand in inst

17

18

Data Movement Instructions

LD+ 0010 PCoffset9DR

LDI+ 1010 PCoffset9DR

offset60110 DRLDR+ BaseR

PCoffset91110LEA+ DR

0011 SRST PCoffset9

1011STI SR PCoffset9

0111 BaseRSTR SR offset6

18



10

19

Data Movement Instructions

• GPR ↔ Memory

• GPR ↔ I/O Devices

• GPR ← Memory ???

• Memory ← GPR ???

19

20

Addressing Modes

• Where can operands be found?

If in memory, how to compute the address where the 
operand/variable is stored ?

• Manner in which address is computed leads to 
three different types of Load/Store instructions

20



11

21

Basic Format

0010 Address generation bitsDR or SR

These encode inform
atio

n on 

how to
 fo

rm
 a 16 bit address

DR is register into which memory contents are read (Load)
SR contains data that has to be written into memory (Store)

21

22

Data Movement Instructions
•Load -- read data from memory to register

o LD: PC-relative mode
o LDR: base+offset mode
o LDI: indirect mode

•Store -- write data from register to memory
o ST: PC-relative mode
o STR: base+offset mode
o STI: indirect mode

•Load effective address -- compute address, 
save in register

o LEA: immediate mode
o does not access memory

22



12

23

PC-Relative Addressing Mode

•Want to specify address directly in the instruction
o But an address is 16 bits, and so is an instruction!
o After subtracting 4 bits for opcode

and 3 bits for register, we have 9 bits available for address.
•Solution:

o Use the 9 bits as a signed offset from the current PC.

•9 bits:
•Can form any address X, such that: 

•Remember that PC is incremented as part of the FETCH phase;
•This is done before the EVALUATE ADDRESS stage.

255offset256 +££-
255PCX256PC +££-

23

LD (PC-Relative)

24



13

25

LD – Load PC-relative Addressing

• Suppose instruction is 
0010011000000010

• This instruction is stored at 
address (decimal) 4999

• Ques: What is the result of this 
instruction ?

500

2000
5000
5001
5002

1200

Address        Memory
contents

5001

400

25

ST (PC-Relative)

26



14

27

Indirect Addressing Mode

•With PC-relative mode, can only address data within 
256 words of the instruction.

Ø What about the rest of memory? 
•Solution #1: 

Ø Read address from memory location,
then load/store to that address.

•First address is generated from PC and IR
(just like PC-relative addressing), then
content of that address is used as target for load/store.

Ø analogy to pointers

27

LDI (Indirect)

28



15

29

Load Indirect

• Suppose instruction is 
1010011000000010

• This instruction is stored at 
address (decimal) 4999

• What is the result of this 
instruction ?

500

2000
5000
5001
5002

1200

Address        Memory
contents

5001

400

29

STI (Indirect)

30



16

31

Base + Offset Addressing Mode

•With PC-relative mode, can only address data 
within 256 words of the instruction.

o What about the rest of memory?
•Solution #2:

o Use a register to generate a full 16-bit address.
•4 bits for opcode, 3 for src/dest register,
3 bits for base register -- remaining 6 bits are used as 
a signed offset.

o Offset is sign-extended before adding to base register.

31

LDR (Base+Offset)

32



17

33

Load Register

• Suppose instruction is 
0110011010000010

• This instruction is at address 
4999

• Suppose Register R2 contains 
the decimal value 5000

• What is the result ?

500

2000
5000
5001
5002

1200

Address        Memory
contents

1200

400

33

STR (Base+Offset)

34



18

35

Load Effective Address

•Computes address like PC-relative (PC plus signed 
offset) and stores the result into a register.

•Note: The address is stored in the register,
not the contents of the memory location.

35

LEA (Immediate)

36



19

37

Example

Address Instruction Comments

x30F6 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 LEA

x30F7 0 0 0 1 0 1 0 0 0 1 1 0 1 1 1 0 ADD imm5.

x30F8 0 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1 ST

x30F9 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 AND imm5

x30FA 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 ADD imm5

x30FB 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 0 STR

x30FC 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1 LDI

opcode

37

38

Example

Address Instruction Comments

x30F6 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 1 R1 ¬ PC – 3 = x30F4

x30F7 0 0 0 1 0 1 0 0 0 1 1 0 1 1 1 0 R2 ¬ R1 + 14 = x3102

x30F8 0 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1 M[PC - 5] ¬ R2
M[x30F4] ¬ x3102

x30F9 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 R2 ¬ 0

x30FA 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 R2 ¬ R2 + 5 = 5

x30FB 0 1 1 1 0 1 0 0 0 1 0 0 1 1 1 0 M[R1+14] ¬ R2
M[x3102] ¬ 5

x30FC 1 0 1 0 0 1 1 1 1 1 1 1 0 1 1 1
R3 ¬ M[M[x30F4]]

R3 ¬ M[x3102]
R3 ¬ 5

opcode

38



20

39

Control Instructions

•Used to alter the sequence of instructions
(by changing the Program Counter)
•Conditional Branch

o branch is taken if a specified condition is true
§ signed offset is added to PC to yield new PC

o else, the branch is not taken
§ PC is not changed, points to the next sequential instruction

•Unconditional Branch (or Jump)
o always changes the PC

•TRAP
o changes PC to the address of an OS “service routine”
o routine will return control to the next instruction (after TRAP)

39

40

Control Instructions

0000 n z p PCoffset9BR

1100 000 BaseR 000000JMP

0100 1 PCoffset11JSR

JSRR 0100 0 00 BaseR 000000

1000 000000000000RTI

1111 0000 trapvect8TRAP

1100RET 000 111 000000

40



21

41

Condition Codes

•LC-3 has three condition code registers:
N -- negative
Z -- zero
P -- positive (greater than zero)

•Set by any instruction that writes a value to a register
(ADD, AND, NOT, LD, LDR, LDI, LEA)

•Exactly one will be set at all times
o Based on the last instruction that altered a register

41

42

Branch Instruction

•Branch specifies one or more condition codes.
•If the set bit is specified, the branch is taken.

o PC-relative addressing:
target address is computed by adding signed offset (IR[8:0])
to current PC.

o Note: PC has already been incremented by FETCH stage.
o Note: Target must be within 256 words of BR instruction.

•If the branch is not taken,
the next sequential instruction is executed.

42



22

BR (PC-Relative)

What happens if bits [11:9] are all zero?  All one?

43

44

Using Branch Instructions

•Compute sum of 4 integers.
Numbers start at location x3100.  Program starts at location 
x3000.

o Add numbers from location x3100 to x311B
o Store first address in R2
o R4 has “counter” – counts down from 4 to 0
o R1 will store the running Sum

44



23

45

R2 <- x3100
R1 <- 0
R4 <- 4 

R4 = 0 ?

R3 <- M[R2]
R1 <- R1 + R3
Increment R2
Decrement R4

NO

YES

Flow Chart for
the program Set R2 to point to x3100

Initialize R1=0 and R4=4
(R4 is a counter)

Load contents at address in R2
Into register R3, add to
Running sum in R1
Decrement counter R4
Increment ‘pointer’ in R2

Set check if count=0,
If R4=0 exit loop

45

Program

x3000 R2 <- x3100
x3001 R4 <- 0
x3002 R1 <- 0
x3003 R4 <- 4

x3004 BRz x300A /* if R4=0 exit loop */
x3005 R3 <- M[R2]
x3006 R1 <- R1 + R3
x3007 R2 <- R2 + 1

x3008 R4 <- R4 - 1
x3009 BRnzp x3004. /* repeat loop */
x300A Halt /* end of loop */

46



24

Program

x3000 R2 <- x3100
x3001 R1 <- 0

x3002 R4 <- 0
x3003 R4 <- 12

x3004 BRz x300A
x3005 R3 <- M[R2]
x3006 R1 <- R1 + R3

x3007 R2 <- R2 + 1
x3008 R4 <- R4 - 1

x3009 BRnzp x3004

LEA   1110010011111111
AND   0101001011100000

AND   0101100010100000
ADD   0001100010100100

BRz 0000010000000101
LDR   0110011010000000
ADD   0001001001000011

ADD   0001010010100001
ADD   0001100100111111

BRnzp 0000111111111010

opcode

dest
source

Immediate 

47

48

JMP (Register)

•Jump is an unconditional branch -- always taken.
o Target address is the contents of a register.
o Allows any target address.

48



25

49

TRAP Instruction

• Modern computers contain hardware and software 
protection schemes to prevent user programs from 
accidentally (or maliciously) interfering with proper 
system function.

• Suffice it to say, we need a way to communicate 
with the operating system

49

50

TRAP

•Calls a service routine, identified by 8-bit “trap vector.”

•When routine is done, 
PC is set to the instruction following TRAP.
•(We’ll talk about how this works later.)

vector routine
x23 input a character from the keyboard
x21 output a character to the monitor
x25 halt the program

50



26

51

The LC-3 ISA: summary

• 16 bit instructions and data
• 2’s complement data type
• Operate/ALU instructions: ADD, NOT, AND
• Data movement Inst: Load and Store

o Addressing mode: PC-relative, Indirect, 
Register/Base+Offset,Immediate

• Transfer of control instructions
o Branch – using condition code registers
o Jump – unconditional branch
o Traps, Subroutine calls – discuss later

• Now we look at the LC3 datapath and controller 
design

51

52

Taking stock: what we have now

• Datatypes of machines: Number Representation
o 2’s complement integers, Floating point
o Arithmetic on 2’s complement
o Logic operations

• Digital logic: devices to build the circuits
o CMOS transistor is the starting point
o Basic logic gates: AND, OR, NOT, NAND, etc.
o Combinational logic ‘blocks’: MUX, Decoder, PLA
o Sequential Logic: storage element, finite state machines
o Putting it all together to build a simple processor- LC3

• Von Neumann Model of computing
• Instruction set architecture (ISA) of LC3

o Instructions of a processor – how program execution takes place
o Addressing modes to data movement, branches, operations
o Encoding an LC3 instruction

• Next question: how to program the processor 
o Using instructions in the ISA

52


