LC3 Architecture:
LC3 Instruction Set
Architecture (ISA)
(Chapter 4,5)

Based on slides © McGraw-Hill
Additional material © 2013 Farmer
Additional material © 2020 Narahari

What is the Hardware/Software
Interface ?...ISA

software ~/ -/

hardware

ISA: Types of Instruction

e 1. Operate Instructions
o process data (addition, logical operations, etc.)

e 2. Data Movement Instructions ...
- move data between memory locations and registers.

e 3. Control Instructions ...

- change the sequence of execution of instructions in the stored
program.
- The default is sequential execution: the PC is incremented by 1 at the start of every
Fetch, in preparation for the next one.

« Control instructions set the PC to a new value during the Execute phase, so the next
instruction comes from a different place in the program.

- This allows us to build control structures such as loops and branches.

Instruction Cycle

¢ Six phases of the complete Instruction Cycle

o Fetch: load IR with instruction from memory

- Decode: determine action to take (set up inputs for ALU, RAM, etc.)
o Evaluate address: compute memory address of operands, if any

o Fetch operands: read operands from memory or registers

o Execute: carry out instruction

o Store results: write result to destination (register or memory)

Changing the Sequence of
Instructions

eIn the FETCH phase, we increment the Program Counter by
1.

o\What if we don’ t want to always execute the instruction that
follows this one?

o examples: loop, if-then, function call
eNeed special instructions that change the contents of the
PC.
eThese are called control instructions.

o jumps are unconditional -- always change the PC

o branches are conditional -- change the PC only if
some condition is true (e.g., the result of an ADD is zero)

LC3 Instruction Set Architecture

e The Instruction set architecture (ISA) of the LC3

- How is each instruction implemented by the control and
data paths in the LC3

o Programming in machine code

- How are programs executed
= Memory layout, programs in machine code

e Overview of LC3 microarchitecture

- How are components connected to build the LC3
processor
= read Appendix C in detail — required to complete processor design

e Assembly programming
- Assembly and compiler process
o Assembly programming with simple programs

LC-3 Overview: Memory and
Registers

eMemory
- address space: 216 locations (16-bit addresses)
o addressability: 16 bits

eRegisters
o temporary storage, accessed in a single machine cycle
» accessing memory generally takes longer than a single cycle
o eight general-purpose registers: RO - R7
» each 16 bits wide
» how many bits to uniquely identify a register?
o other registers

- not directly addressable, but used by (and affected by) instructions
« PC (program counter), condition codes

LC-3 Overview: Instruction Set

eOpcodes
o 15 opcodes
o Operate instructions: ADD, AND, NOT
- Data movement instructions: LD, LDI, LDR, LEA, ST, STR, STI
o Control instructions: BR, JSR/JSRR, JMP, RTI, TRAP
- some opcodes set/clear condition codes, based on result:
= N = negative, Z = zero, P = positive (> 0)
eData Types
o 16-bit 2" s complement integer
eAddressing Modes
o How is the location of an operand specified?
o non-memory addresses: immediate, register
o memory addresses: PC-relative, indirect, base+offset

T T T T T T T T T T
aop+ | Tooot’ | bR | sri o] oo | sme |
oo (e [o8 [& [T i T
wor o [o7 | o[[|
anp+ | jotor | DR | SRy [1[| imm5 |

T T T T T T T T T T T
BR | o000, [n|z]p] PCoffsetd |

1 1 1 1 1 1 1 1 1 1 1

T T T T T T T T T T T T
JMP | 100, [o000 [Baser | | ooco00 |

T T T T T T T T T T T T T
JSR | oo, [1] | | Pcofsettt |

T T T T T T T T T T T
JsRR | ‘o100 [o] oo | Baser [| oocooo |

T T T T T T T T T T T T T
LD+ | oot0, | DR | ‘PCoffsetd. . |

T T T T T T T T T T T T T
LDI+ | ‘1010 | or | | 0 Peofisets, |

+ Indicates instructions that modify condition code§
9

T T T T T T T T T T T T
LDR+ | . 01|10 . | IDR | BlaselR | | Iof'I‘sIetGI |

T T T T T T T T T T T T T
tea+ | 1o | DR | | PCofisets. |

T T T T T T T T T T T T
not+ | 1001 | bR [sk [T Tt T

T T T T T T T T T T T T
RET | ‘moo, [oo | ‘m | oooooo |

T T T T T T T T T T T T T T
RTI | 10000 | . ‘ooooocoooooo T |
ST | Joont. | sk | . Pcoffses |

1 1 1 1 1 1 1 1 1 1 1 1 1

T T T T T T T T T T T T T
STI | 1 ‘l()l‘]‘l 1 | |SR| | 1 1 |PC|0ﬁs|et9| 1 1 |

T T T T T T T T T T T T
STR | Jott1, | sk | BaseR | | ofisets, | |
RAP | 11 | oo00 | " tapvect8 | . |

T T T T T T T T T T T T T T
reserved | . 11p1 . | L |

+ Indicates instructions that modify condition code‘s0

10

Operate Instructions

*Only three operations: ADD, AND, NOT

eSource and destination operands are registers
o These instructions do not reference memory.

- ADD and AND can use “immediate” mode,
where one operand is hard-wired into the instruction.

edataflow diagram associated with each instruction.

o illustrates when and where data moves
to accomplish the desired operation

o used to design the datapath

11

11

Operate Instructions

e NOT

T T T T T T T T T T T
NOT+ | |10|O1| | IDR | SR | | |111|111|

e Addressing mode?
o Where are the operands
o DR and SR specify the register number/address

3 bits needed to specify address of 8 registers

12

12

NOT [1 0 0 1] pst | sre |1

If Dst=010, Src=101

Note: Src and Dst @

NOT (Register)

15 14 13 12 11 10 9 ¢ 7 5 4 0

3 2 1
11111
Must be all 1’ s in bits [0:5]

Register File

R2 = NOT(R3) Dst <

Src

ALU

could be the same register.

13

13

Specifying instruction semantics

Is there a formal way to specify the
transfers/controls needed to implement each
instruction ?

o The register transfers needed.

Is there a formal language

o Can you specify these transfers by writing a program
Hardware Description Languages (HDL)

- Verilog, VHDL, ...

o Processor design and specification today is done using a
HDL

- Use software to design hardware!

Data flow and timing

- Data transfers labelled at each step/cycle
- What transfers and between which devices at each cycle

14

14

e ADD, AND

AND+

o

o

* Addregsing Modejo
Where are the operands
Two modes: (1) register and (2) immediate value

Operate Instructions

| ooor, | pr | srt [o] oo | sr2 |
1 1 1 1 1 1 1 1 1 1
T T T T T T T T .| T T

| 1 00|01 1 | |DR| | |SR1| | 1 | 1 I[nmls 1 |
T T T T T T T T T T

| o0t | PR | SRt Jo] o0 | sRe |
T T T T T T .| T T

[or | SRy 1] | imms |

15

15

ADD/AND (Register)

this zero means ‘register mode ”

l

Operands are in registers

15 14 13 12 11 10 & 8 7 6 % 4 3 2 1 0
ADD (0 0 0 1| Dst | srel [o0]|o0 o] sre2 |
15 14 13 12 11 10 & 8 7 6 5 4 3 2 1 0
AND [0 1 0 1| pst | src1 |o]o o] sre2 |
Register File
_ | Sro2 | 1f Dst=010, Src1=001, Src2=011
Register mode: - |

ADD:
Dst= Src1 + Src2
R2=R1+R3

AND:
Dst= Src1 AND Src2
R2 =R1AND R3

16

ADD/AND (Immediate)

15 14 13 12 11 1

lthis one means ‘Immediate mode ”
) Lo

ADD [0 0 0 1] Ds;t:ll [‘Sr‘cl‘:‘lil

15 14 13 12 11 10 9

C 8 6] 5 1 3 2 1 0
AND [0 1 0 1| pst | sre1l [1] Trms |

Note: Immediate field is
sign-extended.

If Dst=010, Src1=001, Imm5=00011
ADD R2,R1,#3
R2=R1+3

@

I

Instruction Reg

— Al sext |

Register File Immediate mode:
One Operand in inst

Dst <

17

Data Movement Instructions

T T T T T T T T T T T
LD+ | oot0, | orR | PCoffsetd |
1 1 1 1 1 1 1 1 1 1 1
T T T T T T T T T T T T
LDI+ | 10100, | orR | PCoffset9 |
1 1 1 1 1 1 1 1 1 1 1 1
T T T T T T T T T
R+ | otto. | DR | BaseR | offset6 |
1 1 1 1 1 1 1 1 1 1 1
T T T T T T T
LEA+ | "m0, | bR | PCoffset9 |
1 1 1 1 1 1 1 1 1 1
T T T T T T T T T T T T
ST | Joont. | sk | PCoffset9 |
1 1 1 1 1 1 1 1 1 1 1 1
T T T T T T T T T T T T T
STI | T, | sk | PCoffset9 |
1 1 1 1 1 1 1 1 1 1 1 1 1
T T T T T T T T T T
STR | Jot1, | sk | BaseR | | ofisets, | |

18

18

Data Movement Instructions

GPR < Memory

GPR < 1/O Devices

GPR < Memory ?7?7?

Memory — GPR 7?77

19

19

Addressing Modes

¢ Where can operands be found?

If in memory, how to compute the address where the
operand/variable is stored ?

¢ Manner in which address is computed leads to
three different types of Load/Store instructions

20

20

10

Basic Format

T T T T T T T T T T T T T
0010 | DR or SR | Address qeneration bits |
1 1 1 1 1 1 1 1 1 1 1

DR is register into which memory contents are read (Load)
SR contains data that has to be written into memory (Store)

21

21

Data Movement Instructions

eLoad -- read data from memory to register
o LD: PC-relative mode
o LDR: base+offset mode
o LDI: indirect mode

eStore -- write data from register to memory
o ST: PC-relative mode
o STR: base+offset mode
o STI: indirect mode
eLoad effective address -- compute address,
save in register
o LEA: immediate mode
o does not access memory

22

22

11

PC-Relative Addressing Mode

e\Want to specify address directly in the instruction
o But an address is 16 bits, and so is an instruction!

o After subtracting 4 bits for opcode
and 3 bits for register, we have 9 bits available for address.

eSolution:
o Use the 9 bits as a signed offset from the current PC.

¢9 bits: —256 < offset < +255

Can form any address X, such that: PC—256 < X<PC +255

eRemember that PC is incremented as part of the FETCH phase;
oThis is done before the EVALUATE ADDRESS stage.

23
23
LD (PC-Relative)

15 14 13 12 11 10 & 8 7 6 5 4 3 2 1 0
LD |0 0 1 0| Dst | PCoffset9 |

PC Register File Memory
[1

Dst
@

~ Sext

@ Tirs:01

Instruction Reg

24

12

e Suppose instruction is
0010011000000010

LD — Load PC-relative Addressing

e This instruction is stored at
address (decimal) 4999
) . . 1200 500
o Ques: What is the result of this
instruction ?
5000 400
5001 2000
5002 5001
Address Memory
contents
25
25
ST (PC-Relative)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
ST |O 01 1| Src | PCoffset9
PC Register File Memory
L]
Src
@
@
Sext |
@ Tirs:01
Instruction Reg
26

13

Indirect Addressing Mode

¢With PC-relative mode, can only address data within
256 words of the instruction.

> What about the rest of memory?
eSolution #1:

> Read address from memory location,
then load/store to that address.
eFirst address is generated from PC and IR
(just like PC-relative addressing), then
content of that address is used as target for load/store.

> analogy to pointers

27
27
LDI (Indirect)
15 14 13 12 11 10 & 8 7 6 5 4 3 2 1
LDI |1 01 Ol Dst | PCoffset9
PC Register File Memory
L 1]
Dst
@
S
@ TirB:0] v
Instruction Reg @ ®
L v
MAR | g
2
MDR €
28

14

Load Indirect

e Suppose instruction is
1010011000000010

e This instruction is stored at
address (decimal) 4999
1200 500
e What is the result of this
instruction ?
5000 400
5001 2000
5002 5001
Address Memory
contents
29
29
STI (Indirect)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
STI |1 0 1 1| Src | PCoffset9
PC Register File Memory
L 1
Src
©
®
Sext |
@ Tirs:0] -
+ ; —
Instruction Reg @ -
L v,
MAR | S
<
MDR 2
30

15

Base + Offset Addressing Mode

sWith PC-relative mode, can only address data
within 256 words of the instruction.

o What about the rest of memory?
eSolution #2:
o Use a register to generate a full 16-bit address.

¢4 bits for opcode, 3 for src/dest register,
3 bits for base register -- remaining 6 bits are used as
a signed offset.

- Offset is sign-extended before adding to base register.

31
31
LDR (Base+Offset)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
LDR |0 11 Ol Dst | Basel offset6
Register File Memory
Dst
4 Base
@ Sext —
IR[5:0]
Instruction Reg
32

16

Load Register

e Suppose instruction is

0110011010000010
e This instruction is at address
4999
e Suppose Register R2 contains 1200 200
the decimal value 5000
e What is the result ? 5000 400
5001 2000
5002 1200
Address Memory
contents
33
33
STR (Base+Offset)
15 14 13 12 11 10 S 8 7 6 5 4 3 2 1
STR |0 11 ll Src | Basel offseté
Register File Memory
Src
© Base
@ Sext
IR[5:0]
Instruction Reg
34

17

Load Effective Address

eComputes address like PC-relative (PC plus signed
offset) and stores the result into a register.

eNote: The address is stored in the register,
not the contents of the memory location.

35

35

©)

LEA (Immediate)
15 14 13 12 11 10 9 8 6] 5 1 3 2 1
LEA [1 1 1 o] Dst | PCoffset?
PC Register File
[]

Dst

Sext |
@ Tir[8:0

Instruction Reg

N

36

18

Example

Address Instruction Comments
x30F6 1 110001111111101 LEA
x30F7 0001010001101110 ADD imm5.
x30F8 0 011010111111011 ST
x30F9 01 01010010100000 AND imm5
x30FA 0001 010010100101 ADD imm5
x30FB 0111010001001110 STR
x30FC 1 01 0011111110111 LDI
opcode
37
Example
Address Instruction Comments
x30F6 1 11 0001111111101 R1«PC-3=x30F4
x30F7 0 0010100011011 10 R2«R1+14=x3102
M[PC - 5] « R2
x30F8 0011010111111 011 MIX30F4] « x3102
x30F9 01 01010010100000 R2 «0

x30FA 0001 010010100101 R2«+R2+5=5

M[R1+14] « R2
x30FB 01 11010001001110 M[x3102] « 5

R3 « M[M[x30F4]]
x30FC 1 01 0011111110111 R3 « M[x3102]
R3¢« 5

opcode

38

Control Instructions

eUsed to alter the sequence of instructions
(by changing the Program Counter)
eConditional Branch

o branch is taken if a specified condition is true
- signed offset is added to PC to yield new PC

o else, the branch is not taken
= PC is not changed, points to the next sequential instruction

eUnconditional Branch (or Jump)
- always changes the PC

eTRAP
- changes PC to the address of an OS “service routine”
o routine will return control to the next instruction (after TRAP)

39
39
Control Instructions
T T T T T T T T T T
BR | L 00|OO L | n | z | P | |PC|OﬁS|et9| L |
T T T T T T T T T T T
JMP | "100, | o000 | Baser [| 000000 |
T T T T T T T T T T T
JSR | 1 01|00 1 | 1 | 1 1 1 IPC?ﬁs?t11l 1 |
T T T T T T T T T T
JsRR | oto0. [o] oo | BaseR | | 000000 |
T T T T T T T T T T T
RET | 100, | o0 | 1 | 000000 |
T T T T T T T T T T T T
RTI | 1000 | . 000000000000 . |
T T T T T T T T T T T T T
TRAP | | 11|11 | | | OOIOO | | L tlrap\llect§ . |
40
40

20

Condition Codes

oL C-3 has three condition code registers:
N -- negative
Z -- zero
P -- positive (greater than zero)

eSet by any instruction that writes a value to a register
(ADD, AND, NOT, LD, LDR, LDI, LEA)

eExactly one will be set at all times
- Based on the last instruction that altered a register

41

41

Branch Instruction

eBranch specifies one or more condition codes.
olf the set bit is specified, the branch is taken.

o PC-relative addressing:

target address is computed by adding signed offset (IR[8:0])
to current PC.

o Note: PC has already been incremented by FETCH stage.

o Note: Target must be within 256 words of BR instruction.

o|f the branch is not taken,
the next sequential instruction is executed.

42

42

21

BR |0 0 0 o|n[z|p

BR (PC-Relative)

15 14 13 12 11 10 ¢ 8 7

6 5 4 3 2 1 0
PCoffset9 |

What happens if bits [11:9] are all zero? All one?

43

Using Branch Instructions

eCompute sum of 4 integers.

Numbers start at location x3100. Program starts at location
x3000.

o Add numbers from location x3100 to x311B
o Store first address in R2

o R4 has “counter” — counts down from 4 to 0
o R1 will store the running Sum

44

44

22

Flow Chart for
the program

YES

Set R2 to point to x3100
Initialize R1=0 and R4=4
(R4 is a counter)

Set check if count=0,
If R4=0 exit loop

Load contents at address in R2
Into register R3, add to
Running sum in R1

Decrement counter R4

l Increment ‘pointer’ in R2 45
45
Program

x3000 R2 <- x3100

x3001 R4 <- 0

x3002 R1 <- O

x3003 R4 <- 4

x3004 BRz x300A /* if R4=0 exit loop */

x3005 R3 <- M[R2]

x3006 R1 <- R1 + R3

x3007 R2 <- R2 + 1

x3008 R4 <- R4 - 1

x3009 BRnzp x3004. /* repeat loop */

x300A Halt /* end of loop */
46

23

Program

x3000 R2 <- x3100 LEA 1110010011111111
x3001 R1 <- 0 AND 0101001011100000
x3002 R4 <- 0 AND 0101100010100000
x3003 R4 <- 12 ADD 0001100010100100
x3004 BRz x300A BRz 0000010000000101
x3005 R3 <- M[R2] LDR 0110011010000000
x3006 R1 <- R1 + R3 ADD 0001001001000011
x3007 R2 <- R2 + 1 ADD 0001010010100001
x3008 R4 <- R4 - 1 ADD 0001100100111111
x3009 BRnzp x3004 BRnzp 0000111111111010

dest Immediate

source

47

JMP (Register)

eJump is an unconditional branch -- always taken.
o Target address is the contents of a register.
o Allows any target address.

15 14 13 12 11 10 9 7

8 / ¢ 5 4 3 2 1 0
JMP 1 1 0 0/0 0 0/ Base |0 0 0 0 0 0

PC Register File

I—— Base

48

48

24

TRAP Instruction

e Modern computers contain hardware and software
protection schemes to prevent user programs from
accidentally (or maliciously) interfering with proper
system function.

o Suffice it to say, we need a way to communicate
with the operating system

49
49
TRAP
15 14 13 12 11 10 o 8 7 6 5 4 3 2 1 0
TRAP ll 11 1|0 0 00 trapvect8
«Calls a service routine, identified by 8-bit “trap vector.”
vector | routine
x23 | input a character from the keyboard
x21 | output a character to the monitor
x25 | halt the program
e\When routine is done,
PC is set to the instruction following TRAP.
o(We’ Il talk about how this works later.)
50

50

25

The LC-3 ISA: summary

16 bit instructions and data

2’ s complement data type
Operate/ALU instructions: ADD, NOT, AND

Data movement Inst: Load and Store

o Addressing mode: PC-relative, Indirect,
Register/Base+Offset,Immediate

Transfer of control instructions
- Branch — using condition code registers
o Jump — unconditional branch
o Traps, Subroutine calls — discuss later

Now we look at the LC3 datapath and controller
design

51

51

Taking stock: what we have now

Datatypes of machines: Number Representation
o 2's complement integers, Floating point
o Arithmetic on 2’ s complement
o Logic operations
Digital logic: devices to build the circuits
o CMOS transistor is the starting point
- Basic logic gates: AND, OR, NOT, NAND, etc.
o Combinational logic ‘blocks’ : MUX, Decoder, PLA
o Sequential Logic: storage element, finite state machines
o Putting it all together to build a simple processor- LC3
Von Neumann Model of computing
Instruction set architecture (ISA) of LC3
o Instructions of a processor — how program execution takes place
- Addressing modes to data movement, branches, operations
o Encoding an LC3 instruction
Next question: how to program the processor
o Using instructions in the ISA

52

52

26

