
1

Based on slides © McGraw-Hill
Additional material © 2013 Farmer

Additional material © 2019 Narahari

Logic Design (Part 4)
Sequential Logic - Latches
(Chapter 3)

1

2

So Far: Combinational Logic

Combinational Logic:
• Always gives the same output for a given set of inputs
• Aka “state-less” (i.e., no “state” or “memory”)

Sequential Logic:
• Its output depends on its inputs & its last output!
• Forms the basis for “state” or “memory” for a computer

2

2

3

(Finite) State Machine
type of sequential circuit

• Combines combinational logic with storage
• “Remembers” state, and changes output (and state)

based on inputs and current state

State Machine

Combinational
Logic Circuit

Storage
Elements

Inputs Outputs

3

4

Sequential Logic: Starting point
•Where do we start: Build a device, using combinational logic
devices, to store a value

• RS Latch
• Use this to build a more useful/easier to use latch – the D Latch

• concept of memory

•Build it using the devices we have thus far
• How ? Use “feedback” circuit

•What is the methodology behind design of sequential logic
circuits

• Finite State Machines
• Example of Vending machine

•Combine sequential and combinational logic devices to
“assemble” a simple processor!

4

3

5

Feedback Circuits
ØWhat happens if we feed the output of a combinational logic
circuit to an input in the circuit ?

ØThis is the key to circuits that can store values!

ØStable circuit
ØOutput point of circuit retains value indefinitely

ØUnstable circuit
ØState that remains constant only for a duration of a few gate delays

Ø key takeaway: build stable circuits that can “hold” their value

5

6

Feedback Circuits
ØTo retain their state values, sequential circuits rely on
feedback.

ØFeedback in digital circuits occurs when an output is looped
back to the input.
ØA simple example of this concept is shown below.

Ø If Q is 0 it will always be 0, if it is 1, it will always be 1.

1 0 1

0 1 0

6

4

7

Latches and Flip-Flops
•Latch: basic circuit for storage

• Operate on changes in Level (i.e., 1 or 0)
•Flip-flop:

• Sequential circuits take input from output of storage
• Latches that work on change of level can lead to unstable sequential

circuits
ØAs level changes the outputs change --- inputs change!

• Flip-Flop circuits designed to operate properly when they are part of a
sequential circuit

• Designed to work in a synchronized circuit with a Clock

7

8

Most Basic Sequential Logic Circuit: R-S Latch
Most fundamental unit for static memory

• Has the ability to “store” its last output
R-S Latch – Cross-Coupled NAND gates

• Output of each NAND gate serves as input to the other
• Two inputs: S (SET) & R (RESET)
• Two outputs: Q and NOT(Q) Recall: NOT(Q)= ~Q = Q’ = Q
• Called a “Latch” because it can “Latch” onto data coming in

S

R

Q~Q

Another common way
of drawing the same circuit

8

5

9

R-S Latch
• The R-S latch is a bi-stable circuit which means that it can happily

exist in either of two stable states. Just like a see-saw.
• You can push the latch from one state to another by setting or

resetting it with the S-R signals
• The logic levels are maintained because of the feedback paths from

outputs to inputs.

9

10

Most Basic Sequential Logic Circuit: R-S Latch
Most fundamental unit for static memory

• Has the ability to “store” its last output
R-S Latch – Cross-Coupled NAND gates

• Output of each NAND gate serves as input to the other
• Two inputs: S (SET) & R (RESET)
• Two outputs: Q and NOT(Q) Recall: NOT(Q)= ~Q = Q’ = Q
• Called a “Latch” because it can “Latch” onto data coming in

S

R

Q~Q

Another common way
of drawing the same circuit

10

6

11

R-S Latch – Behavior/Truth Table
First, recall truth table for a NAND gate:

R-S Latch Operation:
• Best place to start is S=1, R=0

3-11

S=1

R=0

Q~Q

A B C
0 0 1
0 1 1

1 0 1

1 1 0

Next, look at top NAND gate
àIts inputs are: 1 and 1

Blue 1, comes from lower NAND
àProduces a 0 at its output

Therefore, when S=1, R=0
The output of latch is: Q=0, ~Q=1

0
X1

1
0

11

12

Truth Table for R-S Latch:

Called the “RESET” action, as Q is set to 0
Also, notice: Q and ~Q opposite

Most Basic Sequential Logic Circuit: R-S Latch
First, recall truth table for a NAND gate:

R-S Latch Operation:

S=1

R=0

Q~Q

A B C
0 0 1
0 1 1

1 0 1

1 1 0

ACTION S R Q ~Q
0 0
0 1

RESET 1 0 0 1

1 1

01

12

7

13

Most Basic Sequential Logic Circuit: R-S Latch
Truth table for a NAND gate:

R-S Latch Operation:

3-13

A B C
0 0 1
0 1 1

1 0 1

1 1 0

Truth Table for R-S Latch:

HOLD’s last value on its outputs!
OUTPUT depends on input and last output

ACTION S R Q ~Q
0 0

SET 0 1 ? ?

RESET 1 0 0 1

HOLD 1 1 - -

HOLD 1 1 0 1

0

1

S=1

R=1

Q~Q

Next, set S=1 R=1
Check value of Q

13

14

Most Basic Sequential Logic Circuit: R-S Latch
Truth table for a NAND gate:

R-S Latch Operation:
• Next input case is called the “SET”, when inputs are: S=0, R=1

S=0

R=1

Q~Q

A B C
0 0 1
0 1 1

1 0 1

1 1 0

1st look at upper NAND gate
àIts inputs are: 0 and X (anything)
àProduces a 1 at its output

Lower NAND gate
àInputs are: 1 and 1
àProduces a 0 at its output

0
X

1

0

Next, set S=0 R=1
Check value of Q

14

8

15

Most Basic Sequential Logic Circuit: R-S Latch
Truth table for a NAND gate:

R-S Latch Operation:

3-15

S=0

R=1

Q~Q

A B C
0 0 1
0 1 1

1 0 1

1 1 0

Truth Table for R-S Latch:

SETs LATCH to have a “1” at the output

ACTION S R Q ~Q
0 0

SET 0 1 1 0

RESET 1 0 0 1

1 1

1

0

15

16

Upper NAND gate
àHas S=1 & former value of ~Q=0
àProduces a 1 at its output

(same ~Q as when it started)
Lower NAND gate

àInputs are: 1 and 1
àProduces a 0 at its output (same Q)

Most Basic Sequential Logic Circuit: R-S Latch
Truth table for a NAND gate:

R-S Latch Operation:
• Last valid input case is the “HOLD” S=1, R=1

Ø If we have just “SET” Latch, we will have Q=1, ~Q=0, already on outputs

S=1

R=1

Q~Q

A B C
0 0 1
0 1 1

1 0 1

1 1 0

1
0

1

0

16

9

17

Most Basic Sequential Logic Circuit: R-S Latch
Truth table for a NAND gate:

R-S Latch Operation:

3-17

S=1

R=1

Q~Q

A B C
0 0 1
0 1 1

1 0 1

1 1 0

Truth Table for R-S Latch:

HOLD’s value we “SET” last

ACTION S R Q ~Q
0 0

SET 0 1 1 0

RESET 1 0 0 1

HOLD 1 1 1 0

1

0

Next, set S=1 R=1
Check value of Q

17

18

Storage - Cross-Coupled NANDs (R-S Latch)

Set value of Q by R=0 or S=0
Store value of Q with R=1, S=1
What happens with S=0 and R=0?
• Short answer: confusion
• Real circuits depend on both Q and ~Q
• Strange things may happen if both are 1

D-Latches shows a way to prevent
the RS Latch from ever getting S=R=0 as its input

S

R

Q1

0

0

1~Q

ACTION S R Q ~Q
ILLEGAL 0 0 1 1

SET 0 1 1 0

RESET 1 0 0 1

HOLD 1 1 1 0

HOLD 1 1 0 1

18

10

19

Gated D-Latch: Preventing “Illegal State” of RS Latch
Add logic to an R-S latch
• Create a more convenient interface, prevent S=0 && R=0

Two inputs: D (data) and WE (write enable)
• When WE = 1, latch is set to value of D

ØS = NOT(D), R = D

0

1

10WED

Q

11

S

R

D=1 && WE=1
So Q=1

19

20

Circuits with Memory

•We now have a device (RS Latch) that is capable of storing a
bit

• It hold the previous value of Q

• but need to make sure the inputs are never R=S=0
•Modify the circuit to get a D latch

20

11

21

Gated D-Latch: Preventing “Illegal State” of RS Latch
Add logic to an R-S latch
• Create a more convenient interface, prevent S=0 && R=0

Two inputs: D (data) and WE (write enable)
• When WE = 1, latch is set to value of D

ØS = NOT(D), R = D

0

1

10WED

Q

11

S

R

D=1 && WE=1
So Q=1

21

22

Gated D-Latch: Preventing “Illegal State” of RS Latch
Add logic to an R-S latch
• Create a more convenient interface, prevent S=0 && R=0

Two inputs: D (data) and WE (write enable)
• When WE = 1, latch is set to value of D

ØS = NOT(D), R = D
• When WE = 0, latch continues to hold previous value

ØS = R = 1 (hold condition for SR latch)
• Extra logic does not allow S=0, R=0 case to occur

1

1

01WED

Q

00

S

R

0 was held from
last state

Q no longer follows
D, when WE=0

22

12

23

D-Latch Timing Diagram
• The diagram below is called a “Timing” Diagram

ØOur D-Latch is previous-state dependent
– We can think of this as a time dependency
– Moving to the right on diagram, represents forward moving time

ØThe inputs & outputs to our D-Latch are on left
– Inputs/Outputs can be either “HIGH” (logic 1) or “LOW” (logic)

ØThink of this as a time-dependent truth table

WE

D

Logic level =1
Logic level =0

time®

Q

23

24

D-Latch Timing Diagram
• When the WE signal is high the latch is said to be open and the

output signal, Q, follows the input signal, D.
ØAs in any combinational circuit there will be a small delay between

the time that the input changes and the time that the output follows
suit.

WE

D

Q

open open

time®

When latch is OPEN (WE=1): Notice, Q follows D

24

13

25

D-Latch Timing Diagram
• When the WE signal is low the latch is closed and the output signal, Q

retains its value.

WE

D

Q

open open

time®

When latch is CLOSED (WE=0): Notice, Q doesn’t follow D
(Instead, Q has previous value)

closed

25

26

D-Latch Timing Diagram
• Setup / Hold Times

ØThe input signal should (D) be stable a certain amount of time
before the WE signal is set to CLOSED (WE=0)

– This is referred to as the SETUP time
ØIn addition, the input signal (D) must be stable for a time after the

WE is set to CLOSED (WE=0)
– This is referred to as HOLD time

ØWhy? Time must be given for inputs to propagate through NAND
gates! Gates are not instantaneous!

WE

D

Q

open openclosedLogic level =1
Logic level =0

time®

26

14

27

Next… Storage Devices
•Ok…we now have a device (D-Latch) that can store a bit

•Use this to build ‘real’ storage devices….
•Temporary storage in a computer ?

• Where are variables stored before being sent to the arithmetic unit for
operations on them?

•Register
• Can we build an n-bit register using latches?

•What about “main” memory
•Disk

• Later…

27

