
17

33

Binary Representation Summary
§ Every storage locations stores a finite sequence of bits

• 8-bit, 16-bit, 32-bit etc.
§ The same bit string can mean different things depending on

how the program wants to look at it.

Address 7 6 5 4 3 2 1 0

35 1 0 0 0 0 0 0 1

36 1 0 0 0 0 1 1 1

37 1 1 1 0 0 0 0 1

38 0 1 1 0 1 1 0 1

Unsigned: +129

2C: -127

2C: 109

ASCII: ‘m’

33

34

Arithmetic and Logical Operations

34

18

35

Arithmetic Operations…
§ Addition: we’ve seen this

• Same as decimal…add and propagate carry
§ Subtraction: A –B

• Negate B: compute 2’s complement of B
• Add to A

§ Multiplication – we’ve seen this in decimal…
• Shift and add

§ Shift
• What happens if we add a number to itself ?
• (0011) + (0011) = ??

§ Shift left once = multiply by 2

35

36

Dose of reality: Finite Width
§ On a real computer each memory storage location can only

store a finite number of bits
• For example we can talk about a 16 bit machine, a 32 bit machine or a

64 bit machine
• The fact that the actual storage locations are limited caps the size of

the numbers that we can store and manipulate.
§ These limitations also show up in programming languages

where different basic types have different sizes
• Some basic types in C

o char – typically 8 bits
o short int – typically 16 bits
o int – typically 32 bits
o long int – typically 64 bits

• Note these sizes are not guaranteed and can change on different
architectures.

36

19

37

Dose of reality: Finite Width and Overflow
§ Integers have infinite width

• There are an infinite number of them
§ Hardware integers have finite (architecture defined) width

• Limited by hardware circuits themselves
• 64- bit these days (264 integers):
• LC3 integers are 16-bit (216 or ~64,000)

§ Overflow: when operation result is outside type’s range
• Example: 15 + 1 with 4-bit integers (16 needs 5 bits, 10000)

1111
+ 0001

10000

(15)

(1)

(16)

overflow
(carry-out)

37

Overflow

• If the numbers are two big, then we cannot represent the sum using
the same number of bits.

• For 2's complement, this can only happen if both numbers are positive
or both numbers are negative.

• How to test for overflow:
• Signs of both operands are the same, AND
• Sign of sum is different.

• Another test (easier to perform in hardware): Carry-in to most significant bit position
is different than carry-out.

38

38

20

39

Arithmetic Overflow - Summary
§ For unsigned numbers

• Any addition that produces an ‘extra bit’ is a problem
§ For 2C signed numbers

• Sometimes addition or subtraction produce an extra bit – this is not
necessarily a problem.

• Arithmetic overflow can occur when you are adding 2 positive or 2
negative numbers – in this case if the sign of the result is different
from the sign of the addends you have an arithmetic overflow
o (this is the key to determining overflow condition in 2C)

• Note: most CPU architectures today, use 2C representation

39

40

Shifting Bit Fields

§ Shift Left:
• Move all #’s to the left, fill in empty spots with a 0

§ Shift Right (2 kinds):
• shift right logical (SRL) >>

o shift 0’s in from the left
• shift right arithmetic (SRA) >>>

o replicate the sign bit, (very useful for sign extension!)

7 6 5 4 3 2 1 0
Original Pattern x 0 1 1 0 1 0 1 1
X << 1 – Left Shift by 1 1 1 0 1 0 1 1 0
X << 2 – Left Shift by 2 1 0 1 0 1 1 0 0

Original Pattern x 1 1 1 0 1 0 1 1
X >> 1 –Shift Right (logical) by 1 0 1 1 1 0 1 0 1
X >>> 1 – Shift Right (arithmetic) by 1 1 1 1 1 0 1 0 1

40

21

41

Shifts
§ Powers of 2 are everywhere …
§ … and so is multiplication by (small) powers of 2

§ Another use of the 2n = 2*2n–1 binary identity
• Shift left by n (pushing in 0s) is the same as multiplying by 2n

• Use << to construct both hardware and software multipliers
• What about shift right ?

§ Think of it like multiplying by 10. Say you have 5*10, isn’t that
just shifting 5 to the ten’s place?

o 5*100, just shifting the 5 to the hundred’s place?
§ Most important use of “shifting circuits”…

• To implement multiplication in a computer (recall shift & add?)

41

42

Sign Extension
§ Suppose we have a number which is stored in a four bit

register
§ We wish to add this number to a number stored in a eight bit

register
§ We have a device which will do the addition and it is

designed to add two 8 bit numbers
§ What issues do we need to deal with?

42

22

43

Sign Extension
§To add two numbers, we must represent them
with the same number of bits.
§If we just pad with zeroes on the left:

4-bit 8-bit
0100 (4) 00000100 (still 4)

4-bit 8-bit

1100 (-4) 00001100 (12, not -4)

43

44

Sign Extension
§To add two numbers, we must represent them
with the same number of bits.
§If we just pad with zeroes on the left, won’t work for negative
integers:

§Instead, replicate the MS bit -- the sign bit:

4-bit 8-bit
0100 (4) 00000100 (still 4)
1100 (-4) 11111100 (still -4)

Question to think about: why does this work?

44

23

45

Logical Operators

45

46

Another use for bits: Logic

§ logical variables can be true or false, on or off, etc., and so
are readily represented by the binary system.

• A logical variable A can take the values false = 0 or true = 1 only.
oLogical Variables = Propositions in propositional logic
oExample proposition: “Sarah is a UTA for this course” – can only

be True or False
§The manipulation of logical variables is known as Boolean

Algebra, and has its own set of operations
• not to be confused with the arithmetic operations

• Some basic operations: NOT, AND, OR, XOR
• Boolean function: function over Boolean variables and using the

Boolean operators (i.e, logic operations)

46

24

47

Propositional Logic – sound familiar from CS1311?
§ each variable has True (T) or False (F) value
§Use logical connectives to build more complex propositions
(i.e., logic statements)

• Connectives: AND, OR, NOT, …
§ (A AND B) is True if A is True and B is true….
§Build “truth table” for propositional ‘formula’

A B A AND B
F F F
F T F
T F F
T T T

A B A OR B
F F F
F T T
T F T
T T T

A NOT A
F T
T F

47

48

Boolean Logical Operations
§Represent propositions using binary representation
§Operations on logical TRUE or FALSE variables

• Boolean variables
• two states -- takes one bit to represent: TRUE=1, FALSE=0

§View n-bit number as a collection of n logical values
• operation applied to each bit independently

A B A AND B
0 0 0
0 1 0
1 0 0
1 1 1

A B A OR B
0 0 0
0 1 1
1 0 1
1 1 1

A NOT A
0 1
1 0

48

25

49

Exclusive OR
§ (A XOR B) is true if exactly one of A or B is true; else false

A B A XOR B

0 0 0

0 1 1

1 0 1

1 1 0

49

Logic Operations..more examples

A B C (A AND B) (NOT C) (A AND B) OR (NOT C)

0 0 0 0 1 1

0 0 1 0 0 0

“compound” proposition – composition of logic operators

50

26

51

Bitwise Logical Operations
§ View n-bit field as a collection of n logical values

• Apply operation to each bit independently

§ Bitwise AND: useful for clearing bits
• AND with zero = 0
• AND with one = no change

§ Bitwise OR: useful for setting bits
• OR with zero = no change
• OR with one = 1

§ Computers don’t support individual bits as a data type
• Just use least significant of n-bit integer
• Integers are generally more useful

11000101
AND 00001111

00000101

11000101
OR 00001111

11001111

51

52

Another dose of “reality”
§ look at how some of the concepts we have studied take

shape in ‘real life’
• C programming and O/S

§ Will loop back to this topic in 2 weeks
• Go through the lecture notes posted on my webpage
• As you learn C, try out the operators discussed in the notes

52

27

53

Logical Operations in C
§ C supports both bitwise and boolean logic operations

• x & y bitwise logic operation
• x && y boolean operation: output is boolean value

§ What’s going on here?
• In boolean operation the result has to be TRUE (1) or FALSE (0)
• Treats any non-zero argument as TRUE and returns only TRUE (1) or

FALSE (0)
§ In C: logical operators do not evaluate their second

argument if result can be obtained from first
• a && 5/a can we get divide by zero error?

53

54

Bitwise Operators in C
§ Can only be applied to integral operands
§ that is, char, short, int and long
§ (signed or unsigned)
& Bitwise AND

| Bitwise OR
^ Bitwise XOR
<< Shift Left

>> Shift Right
~ 1’s Complement (Inversion)

54

28

55

Question: Bitwise operations in C
§ assume 4 bit
§ What is (4 & 6) : 0100 & 0110 ?

§ What is (4 ^ 6): 0100 ^ 0110 ?

§ What is (~4)

§ What is (4 && 6): 0100 && 0110 ?

55

56

Text, Real numbers,….

56

29

57

Hexadecimal (Base-16) Notation
§ More compact and convenient than binary (base-2)

• Fewer digits: group four bits per hex digit ® less error prone
• Just a notation, not a different machine representation

o Most languages (including C and LC-3) parse hex constants
• Sometimes hex numbers preceded with x or 0x

Binary Hex Decimal
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7

Binary Hex Decimal
1000 8 8
1001 9 9
1010 A 10
1011 B 11
1100 C 12
1101 D 13
1110 E 14
1111 F 15

16 symbols: 0,1,2,…A,B,C,D,E,F

57

Converting from binary to hex

• Starting from the right, group every four bits together into a
hex digit. Sign-extend as needed.

This is not a new machine representation or data type,
just a convenient way to write the number.

58

Ex: Hex number 3D6E easier to communicate than binary
0011110101101110.
Ex: 0x1 = representation of decimal number 1
Ex: 0x14 = decimal number 16+4 = 20
Ex: 0xFFFF = 16 bit number with all 1’s = decimal number 216-1

58

30

59

Using Binary #’s to represent any type of
information

§ “Encoding” data, simply means an agreed upon “mapping”
of data from one representation to another

• At some point, it is the choice of an engineer to define the encoding or
“mapping” of data between two forms

§ To represent text we use ASCII encoding

§ ASCII: American Standard Code for Information Interchange
• 7 bits needed to encode all characters
• Represent as 8 bit number (i.e., a byte)

59

60

ASCII Codes
§ Represent characters from keyboard

• This encoding used to transfer characters between computer and all
peripherals (keyboard, disk, network…)

§ Typing a key on keyboard = corresponding 8-bit ASCII code
is stored and sent to computer
• The computer has to interpret the ASCII code and ‘extract’ the

character represented by the code
o Most programming languages have this feature built-in (ie.,

compiler figures it out for you)

7 bit binary Hex character 7 bit binary Hex character
011 0000 30 0 100 0101 45 E

011 0001 31 1 110 0101 65 e

010 0001 21 ! 010 0000 20 space

010 0011 23 # 000 1010 0A linefeed

60

31

61

Table: ASCII Codes
§ASCII: Maps 128 characters to 7-bit code.

• both printable and non-printable (ESC, DEL, …) characters
00 nul 10 dle 20 sp 30 0 40 @ 50 P 60 ` 70 p
01 soh 11 dc1 21 ! 31 1 41 A 51 Q 61 a 71 q
02 stx 12 dc2 22 " 32 2 42 B 52 R 62 b 72 r
03 etx 13 dc3 23 # 33 3 43 C 53 S 63 c 73 s
04 eot 14 dc4 24 $ 34 4 44 D 54 T 64 d 74 t
05 enq 15 nak 25 % 35 5 45 E 55 U 65 e 75 u
06 ack 16 syn 26 & 36 6 46 F 56 V 66 f 76 v
07 bel 17 etb 27 ' 37 7 47 G 57 W 67 g 77 w
08 bs 18 can 28 (38 8 48 H 58 X 68 h 78 x
09 ht 19 em 29) 39 9 49 I 59 Y 69 i 79 y
0a nl 1a sub 2a * 3a : 4a J 5a Z 6a j 7a z
0b vt 1b esc 2b + 3b ; 4b K 5b [6b k 7b {
0c np 1c fs 2c , 3c < 4c L 5c \ 6c l 7c |
0d cr 1d gs 2d - 3d = 4d M 5d] 6d m 7d }
0e so 1e rs 2e . 3e > 4e N 5e ^ 6e n 7e ~
0f si 1f us 2f / 3f ? 4f O 5f _ 6f o 7f del

how to handle more than 128 characters?...
Unicode representation

61

62

Interesting Properties of ASCII Code
§What is relationship between a decimal digit ('0', '1', …)
and its ASCII code?

§What is the difference between an upper-case letter
('A', 'B', …) and its lower-case equivalent ('a', 'b', …)?

§Given two ASCII codes for characters, how do we tell which
comes first in alphabetical order?

62

32

63

Limitations of integer representations ?..
do we need anything else?

§ Most numbers are not integer!
• Even with integers, there are other considerations

§ Range:
• The magnitude of the numbers we can represent is determined by

how many bits we use:
o e.g. with 32 bits the largest number we can represent is about +/- 2 billion, far too small for many

purposes.

§ Precision:
• The exactness with which we can specify a number:

o e.g. a 32 bit number gives us 31 bits of precision, or roughly 9 figure precision in decimal
repesentation.

§ How to deal with Real numbers…We need other data types!

63

64

How to deal with complicated real
numbers….Some History…

§ The Indiana Legislature once introduced legislation
declaring that the value of p was exactly 3.2

64

33

65

Fixed-Point
§ How can we represent fractions?

• “binary point” separate positive from negative powers of two
o Analogous to “decimal point”: .75 = (7/10)+(5/100)

• 2C addition and subtraction still work
o If binary points are aligned (“fixed-point”)

00101000.101 (40.625)
+ 11111110.110 (-1.25)
00100111.011 (39.375)

2-1 = 0.5
2-2 = 0.25
2-3 = 0.125

65

66

Very Large and Very Small: Floating-Point
§ Problem

• Large values: 6.022 x 1023 ® requires 79 bits
• Small values: 6.626 x 10-34 ® requires >110 bits

§ Solution: use equivalent of “scientific notation”: F x 2E

• Need to represent F (fraction), E (exponent), and S (sign)

§ IEEE 754 Floating-Point Standard

S Exponent Fraction

66

34

67

Scientific Notation

-6.023 x 10-23

Sign
Normalized
Mantissa

Base

Sign of
Exponent

Exponent

?
67

68

What next..
§ The hardware building blocks and their operations –

Chapter 3
§ Digital Logic structures

• Basic device operations: CMOS transistor
• Combinational Logic circuits

o Gates (NAND, OR, NOT), Decoder, Multiplexer
o Adders, multipliers

• Sequential circuits– concept of memory
o Finite state machines, memory organization
o Basic storage elements: latches, flip-flops

68

35

69

Appendix
§ Additional notes not covered during lecture

69

70

Generalized Weighted Positional base k (radix k)
representation
§ Can generalize weighted positional to any base k
§ Use k symbols – also known as k-ary numbers (radix k)

• Radix-10 (decimal) 0,1,2,…,9
• Radix 2 (binary) 0,1
• Radix 16 (hex) 0,1,…,9,A,B,C,D,E,F

§ Weighted positional numbers – position gives “weight” of
location
• Position 0 (rightmost) has weight 1 (k0), Position i has weight ki

§ The base k number an-1…a1a0 represents decimal value

∑!"#!"$%& ai ki

§ How many different base k numbers of length n ?
• Each of the n positions can have k values
• How many different strings of length n, where each position has one of

k values

70

36

71

Signed Magnitude
§ 5-bit number
§ Leading bit is the sign bit

-4 10100

-3 10011

-2 10010

-1 10001

-0 10000

+0 00000

+1 00001

+2 00010

+3 00011

+4 00100

Range is:
-2N-1 + 1 < i < 2N-1 - 1

Y = “abc” = (-1)a (b.21 + c.20)

71

72

One’s Complement
§ Invert all bits -4 11011

-3 11100

-2 11101

-1 11110

-0 11111

+0 00000

+1 00001

+2 00010

+3 00011

+4 00100

Range is:
-2N-1 + 1 < i < 2N-1 - 1

If msb (most significant bit) is 1 then the
number is negative (same as signed
magnitude)

72

37

73

Two’s Complement (2C) – why does it work
§ Representation designed to allow us to store and

manipulate both positive (aka: +ve)
and negative (aka: –ve) numbers

§ To represent a number X we actually compute and store (2n

+ X)
§ Recall 2n in binary will be a 1 followed by n zeros

73

74

Why does this work?
§ Consider adding two 2C numbers:

(2n + X) + (2n + Y) = 2n + (2n + (X+Y))

2C representation of (X+Y)

Extra overflow bit (discarded)

In practice:
• The Most Significant Bit (MSB) in N-bit 2C representation

has a weight of -2(N-1)

74

38

75

Encoding Integers: Formal Definition

short int x = 15213;
short int y = -15213;

• C short 2 bytes long

§ Sign Bit
• For 2’s complement, most significant bit indicates sign

o 0 for nonnegative
o 1 for negative

B2T (X) = -xw-1 ×2
w-1 + xi ×2

i

i=0

w-2

åB2U(X) = xi ×2
i

i=0

w-1

å

Unsigned Two’s Complement

Sign
Bit

Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
y -15213 C4 93 11000100 10010011

75

76

Comparison
§ Another useful operation is comparison

• == (equals), != (not equals), >, <, >=, <=

§ Comparison via subtraction, A – B, if result is …
• Zero ® A == B, not zero ® A != B
• Positive ® A > B, not positive ® A <= B
• Negative ® A < B, not negative ® A >= B

§ Pitfall: comparison is explicitly signed or unsigned
• +/– are not, “result” is same either way
• Comparison interprets numbers in a way +/– don’t
• Example, which is bigger 0110 or 1010?

76

39

77

Implementing Comparison
§ How are signed and unsigned comparison implemented?

• Let’s look at 0110 (6) and 1010 (–6 or 10) in 4-bit representation
• If this is a signed comparison, subtraction result is positive (12)
• If unsigned, subtraction result is negative (–4)
• Potential problem: 12 overflows 4-bit signed representation
• What to do? Extend to 5-bit representation, check “new” MSB

o Signed comparison? Sign extend
o Unsigned comparison? Zero extend

00110
–01010

11100

00110
–11010

01100

77

78

Basic Logic Operations

§ Equivalent Notations
• not A = A’ = A
• A and B = A.B = AÙB = A intersection B
• A or B = A+B = AÚB = A union B

§ Other common logic operations:
• NAND = NOT AND

oFind AND and then Complement it (invert bit)
• NOR = NOT OR

oFind OR and then Complement it
• XNOT = NOT XOR

lTruth Tables of Basic Operations

78

40

DeMorgan's Laws 1
• There's an interesting relationship between AND and OR.
• If we NOT two values (A and B), AND them, and then NOT the result,

we get the same result as an OR operation. (In the figure below, an
overbar denotes the NOT operation.)

• Here's the truth table to convince you:
²Copyright © McGraw Hill Education. Permission required or display

A B A̅ B̅ A̅ AND B̅ A̅ AND B̅
0 0 1 1 1 0
0 1 1 0 0 1
1 0 0 1 0 1
1 1 0 0 0 1

79

79

DeMorgan's Laws 2

• This means that any OR operation can be written as a
combination of AND and NOT.

• This is interesting, but is it useful? We'll come back to this in
later chapters...

• Also, convince yourself that a similar "trick" works to perform
AND using only OR and NOT.

²Access the text alternative for slide
images.

80

80

41

81

IEEE-754

0 00000000 00000000000000000000000

s
i
g
n

exponent mantissa (significand)

(-1)S * 1.M * 2 E-127

Sign
1 is understood
Mantissa (w/o leading 1)
Base

Biased Exponent

31 30 23 22 0

81

82

IEEE 754 Floating-Point Standard

§ 32-bit (“single-precision” or float)
• 8-bit exponent, 23-bit fraction
• X = –1s * 1.fraction * 2exponent–127, 1 ≤ exponent ≤ 254

o Exponent representation is called “excess notation”

§ 64-bit (“double-precision” or double)
• 11-bit exponent, 52-bit fraction
• X = –1s * 1.fraction * 2exponent–1023, 1 ≤ exponent ≤ 2046

§ Representation must be “normalized” (just like decimal)
• 1 ≤ Fraction < 2 (fraction to left of binary point must be 1)

o This 1 is implicit in Fraction

S Exponent Fraction

82

42

83

Scientific Notation

-6.023 x 10-23

Sign
Normalized
Mantissa

Base

Sign of
Exponent

Exponent

?
83

84

Floating-Point Example
§ What is this?
§ 10111111010000000000000000000000

• Sign is 1: number is negative
• Exponent is 01111110 = 126 (decimal)
• Fraction is 0.100000000000… = 1/102 = 0.5 (decimal)

§ Value = –1.5 * 2(126–127) = –1.5 * 2–1 = –0.75

sign exponent fraction

84

43

85

More floating point

§ Reading assignment – Chapter 2

85

