
1

Data Representaton:
Bits, Data Types, Operations
(Chapter 2)

Based on slides © McGraw-Hill
Additional material © 2008 Roth
Additional material © 2010 Taylor

Additional material © 2013 Farmer
Additional material © 2020 Narahari

1

2

How do you represent data ?

§Our first requirement is to find a way to represent
information (data) in a form that is mutually
comprehensible by human and machine.
• What kinds of data ?

o Integers
o Reals
o Text
o …what else
o …

2

2

Data Type

• In a computer system, we need a representation of data
and operations that can be performed on the data by the
machine instructions or the computer language.

• This combination of representation + operations is known
as a data type.

• The type tells the compiler how the programmer intends to use it
• Prog. Languages have a set of data types defined in lang

• In C: int, float, char, unsigned int, …

Type Representation Operations
Unsigned integers binary add, multiply, etc.
Signed integers 2's complement binary add, multiply, etc.
Real numbers IEEE floating-point add, multiply, etc.
Text characters ASCII input, output, compare

3

3

4

Number systems
§ A number is a mathematical concept

• Natural numbers, Integers, Reals, Rationals,..
§ Many ways to represent a number…..

• Symbols used to create a representation
• Example: Decimal representation uses the symbols (digits) 0,1,2…9

o Binary uses the symbols 0,1
• Roman numerals: I, II, V, X, etc.

4

3

5

Your first counting numbers experience ? How
did you learn to count? How did you express a
number ?

The Unary system is also used by Turing Machines
…Why ?

5

6

In the CS world…..

§ There are 10 kinds of people in the world…

?

Those who know binary, and those who don’t

6

4

7

Computer is a Binary Digital System
§ Digital = finite number of values (compared to ‘analog’=

infinite values)
§ Binary = only two values: 0 and 1

• Unit of information = binary digit or “bit”

§ Circuits (Chap 3) will pull voltage down towards zero or will
pull up towards highest voltage
• Grey areas represent noise margin – allowable deviation due to

electrical properties (resistance, capacitance, interference,..)
• More reliable than analog

§ Alternative: can define multiple discrete values in voltage range
• Problem: circuits would become much more complex

7

8

If we have more than two values…
§ Basic unit of information = binary digit or bit
§ Each “wire” in a logic circuit represents one bit = 0 or 1
§ Values with more than 2 states require multiple wires (bits)
§ With 2 bits ® 4 possible values (states/strings): 00, 01, 10, 11
§ 3 bits ® 8 values: 000, 001, 010, 011, 100, 101, 110, 111

§ In general: with n bits can represent 2n different values

8

5

9

Bits – the universal data representation
§ everything that is stored or manipulated on the computer is

ultimately expressed as a group of bits.
• Text – characters, strings,
• Numbers – integer, fraction, real,…
• Video, Audio, Images (using pixels…pixel can be 8 bits)
• Logical – True (1) or False (0)
• Instructions (program) are just 0’s and 1’s = programs are just another

kind of data!
§ We encode a value by assigning a bit pattern to represent

that value
§ We perform operations (transformations) on bits, and we

interpret the results according to how the data is encoded

9

10

Hmmm……Machine Data Types

§ devices that make up a computer are switches that can be
on or off, i.e. at high or low voltage.
• Thus they naturally provide us with two symbols to work with: we can

call them on & off, or (more usefully) 0 and 1.

§ We don’t want to keep referring to switches…
• power of abstraction and problem transformation !

10

6

11

Terminology

§ A single binary digit is referred to as a bit
§ A collection of 8 bits is referred to as a byte
§ A collection of 4 bits is referred to as a nibble

• Also a Hex digit

§ In a computer memory each storage location can only hold
a finite number of bits

01101010
nibble

byte

bit

bit

11

12

Data Representation
§ We encode a value by assigning a bit pattern to represent

that value
• Encoding determines how to interpret the value of an n-bit binary

‘string’
§ How to represent different types of data:

• Start with Integers
o Unsigned (non-negative)
o Negative

• Text …ASCII codes
• Real numbers – floating point

12

7

13

(Unsigned) Integer Representation
§ Non-positional notation (unary): 5 represented as 11111
§ What are you used to ? Decimal representation (0..9) and…
§ Decimal Weighted positional representation

• Position gives the weight of the location
• decimal number “329” (three hundred twenty nine)
• “3” is worth 300, because of its position (most significant)
• “9” is only worth 9 (least significant)

329
102 101 100

3x100 + 2x10 + 9x1 = 329

base-10
(decimal) Value= Three hundreds,

Two tens, and
Nine ones.

13

14

Integer Representation

§ Weighted positional representation in Binary

329
102 101 100

3x100 + 2x10 + 9x1 = 329

101
22 21 20

1x4 + 0x2 + 1x1 = 5

most
significant

least
significant base-2

(binary)

base-10
(decimal)

Notations: the bit position i has weight of 2i

n bit binary number an-1an-2,…,a1,a0

represents the decimal value/number
∑!"#!"$%& ai 2i

14

8

15

Unsigned Integers
§ An n-bit unsigned integer represents 2n values

• Values from 0 to 2n-1 22 21 20 val
0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

15

16

Question
§ what number does the binary string 1011 represent

§ What number does 00011 represent ?

16

9

17

Decimal to Binary Conversion:

1. What is the binary representation of decimal number 19
• Express 19 as a sum of numbers each a power of 2
• Algorithm to convert decimal (base 10) to binary (base 2)

o Generalize to convert from base k to base m

k bit number: bk-1,bk-2,…,b1,b0
Decimal integer N represented by this binary number is:

bk-1 2k-1+ bk-22k-2 + …+b1 21 + b0 20

19 = 1.16 + 0.8 + 0.4 + 1.2 + 1.1
= 1.24 + 0.23 +0.22+ 1.21 + 1.20

10011

17

18

Conversion from Decimal to Binary
//input is Decimal number N, output is list of bits bi //
i=0;
while N > 0 do

bi = N % 2; // bi = remainder; N mod 2
N = N / 2; // N becomes quotient of division
i++;

end while
§ Replace 2 by r and you have an algorithm that computes the

base r representation for N

18

10

19

Example: Conversion of 19 to Binary
//input is Decimal number N, output is list of bits bi //
i=0;
while N > 0 do

bi = N % 2; // bi = remainder; N mod 2
N = N / 2; // N becomes quotient of division
i++;

end while
§ Iteration 1: b0 = 19%2 =1 and N= 19/2= 9
§ Iteration 2: b1 = 9%2 = 1 and N=4
§ Iteration 3: b2 = 4%2 = 0 and N=2
§ Iteration 4: b3 = 2%2 =0 and N=1
§ Iteration 5: b4 = 1%2 =1 and N=0 so loop terminates
§ Binary representation of 19 = 10011

19

20

Arithmetic Operations on Unsigned Integers
§ Recall: Data type is representation and operations

20

11

Unsigned Binary Arithmetic

• Base-2 addition -- just like base-10
• Add from right to left, propagating carry.

• Can also do subtraction, multiplication, etc., using base-2.

21

11110

21

22

Question:

§ 1. Add two 4-bit binary numbers 0011 and 1010,
• what is the 4-bit result ?

§ 2. Add two 4 bit numbers: 0100 and 1100
• What is the 4-bit result ?

22

12

23

Recap: Binary representation of integers
§ We saw how Natural numbers can be represented in binary

using weighted positional system
§ Arithmetic operations work way as with decimal

representation
§ In general, base-K (radix-K) representation of numbers

using weighted positional system
• Decimal is base-10
• Binary is base 2

23

24

Negative Integers, Operations (Arithmetic and
Logical), Real Numbers

24

13

25

What About Negative Integers?
§ Negative numbers have rights too

• No negation without representation!!

§ How do we represent negative integers in decimal:
• sign followed by value
• - 269
• +169 is usually written as 169 (drop the + sign)

§ Question: Is this a valid (as per math definition) base 10
(decimal) representation ?

25

26

Negative Integers in Binary?

§ One option: sign-magnitude concept
• What do we do with paper-and-pencil: put a ‘-’ in front
• No ‘–’ in binary, just use a 1 in most significant bit to denote sign (0=

positive, 1= negative)
00101 = 5
10101 = –5

§ Another option: 1’s Complement
• Simply complement bits
• 00101 = 5
• 11010 = -5

§ Note: in both these representations, we are using an extra
bit to denote the sign

26

14

27

Examples
§ 4 bit representation of -2 in

• Signed magnitude binary
o First represent 2 in binary: 0010
o Since negative, the most significant bit (leftmost) should be=1
o Therefore -2 in signed magnitude binary is: 1010

• 1’s complement binary – first represent 2 in binary= 0010
o Complement all the bits to get 1101

§ A and B are signed magnitude binary nos.
• A=1010 (-2) and B= 0011 (+3)
• A+B = ?

§ A and B are 1’s complement binary nos.
• A= 1100 and B=0011
• A+B= 1111 but two ways to represent zero!

1010
0011
1101 (-5)

1100
0011
1111 (0)

27

28

What type of representation do we want ?
§ We would like the same arithmetic ‘algorithms’ work for

negative numbers
• Keeps hardware circuits simple

§ We want the same addition algorithm
• Add starting with rightmost (least significant) bit and propagate the

carry bit to the left
§ Oops…Problem with signed magnitude and 1’s Comp

• Same addition algorithm does not work!!
• Two representations for zero – complicates circuits for testing zero

§ Using Signed magnitude or 1C to represent negative
integers is a bad idea!

28

15

29

Two’s Complement Representation
§ viewed as weighted position: but weight of most significant bit is (-2N-1)
§If number is positive or zero,

• normal binary representation, zero in most significant bit
§If number is negative,

• start with positive number
• flip every bit (i.e., take the one’s complement)
• then add one

00101 (5)
11010 (1’s comp)

+ 1
11011 (-5)

29

30

More 2C examples

01001 (9)

10110 (1’s comp)

+ 1

§ Find 2C of 9
§ Find 2C of -6

10111 (-9)

11010 (-6)

00101 (1’s comp)

+ 1_________
00110 (6)

30

16

31

Addition
§ Two 2’s Complement numbers
§ A = 1010

• = negative, therefore flip bits and add 1 to get 0101+1=0110
• A = -6

§ B = 0011
• = positive, therefore B =3

§ What is A+B
1010 (-6)
0011 (3)

+_____
1101 (-3)

31

32

2C Summary
§ If you have the binary representation for a number, to find

the negative in 2C representation, simply:
• Flip all the bits and add 1

o OR
• Copy bits from right to left up to and including the first ‘1’

o Flip remaining bits
• Techniques work in reverse as well!

32

