Review: Data
Representation and
Boolean operators in C

Based on slides © O’Hallaron
Additional material © 2020 Narahari

Binary Representation: Summary

= Every storage locations stores a finite sequence of bits
* 8-bit, 16-bit, 32-bit etc.

» The same bit string can mean different things depending on
how the program wants to look at it.

EEAREEREERE .
/ Unsigned: +129
35 1 0 0 0 0 0 0 1

T~ 2C:-127
36 1 0 0 0 0 1 1 1

37 (U T T G N O RO
/ 2C: 109
38 I T T I TR T O

0000
0001
0010
0011
0100
0101
0110
0111
1000

1001

1010

1011

1100

1101

1110

1111

Unsigned & Signed Numeric Values

= Equivalence
+ Same encodings for
nonnegative values

= Uniqueness

» Every bit pattern represents
unique integer value

» Each representable integer has
unique bit encoding
= = Can Invert Mappings
« U2B(x) = B2U'(x)
o Bit pattern for unsigned integer
* T2B(x) = B2T(x)

o Bit pattern for two’ s comp integer

Relation between Signed & Unsigned

Two’s Complement

Unsigned

ux

Maintain Same Bit Pattern

0

| KR

| KR

= 2wl = ow {x x>0
ux =

x+2" x<0

Basic Logic Operations/Gates

= AND:
» Equivalent notations: A AND B = A.B = AAB
* OR
+ Equivalent notations: A or B = A+B = AvB NOT
= NOT _
« Equivalent notations: not A=A’ = A ‘DO'
= XOR
» Equivalent Notations: AXORB=A"B
» Other common logic operations:
- NAND =NOT AND -
*+ NOR =NOT OR :D_

Next...a little bit of “reality”

= |ook at how some of the concepts we have studied take
shape in ‘real life’
» C programming language

Data Representations

Sizes of C Objects (in Bytes)

+ C Data Type Compaq Alpha Typical Intel IA32/1A64
o int 4 4
o long int 8 8
o char 1 1
o short 2 2
o float 4 4
o double 8 8
o long double 8 10
o char* 8 4/8 (64 bit needs 8)

— Or any other pointer

Signed vs Unsigned in C

C allows int to be defined as unsigned or signed (!!)

Constants

» By default are considered to be signed integers

« Unsigned if have “U” as suffix
0U, 42949672590

Casting — nasty stuff!!! Or is it fun ??

+ Explicit casting between signed & unsigned same as U2T and T2U
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;

 Implicit casting also occurs via assignments and procedure calls
tx = ux;

uy = ty;

Casting Signed to Unsigned

= C Allows Conversions from Signed to Unsigned

short int x = 15213;
unsigned short int ux = (unsigned short) x;
short int y = -15213;
unsigned short int uy = (unsigned short) y;

= Resulting Value
» No change in bit representation

* Nonnegative values unchanged
o ux=15213

* Negative values change into (large) positive values
o uy=50323

= Casting Surprises in expression evaluation

+ If you mix signed and unsigned then signed cast to unsigned...

unexpected results in comparisons (>, < etc.)

.and

Why Should | Use Unsigned?

= Don’t Use Just Because Number Nonzero
+ Easy to make mistakes
for (i = cnt-2; 1 >= 0; 1i--)
ali] += al[i+1];
= Do Use When Performing Modular Arithmetic
* Multiprecision arithmetic
 Other esoteric stuff

= Do Use When Need Extra Bit's Worth of Range

» Working right up to limit of word size

10

Logical Operations in C

= C supports both bitwise and boolean logic operations
* x&y Dbitwise logic operation
+ x && y boolean operation: output is boolean value
= What's going on here?
* In boolean operation the result has to be TRUE (1) or FALSE (0)
+ Treats any non-zero argument as TRUE and returns only TRUE (1) or
FALSE (0)
* In C: logical operators do not evaluate their second
argument if result can be obtained from first
* a&&5/a can we get divide by zero error?

11

Bitwise Logical Operators

= View n-bit number as a collection of n logical values
+ operation applied to each bit independently
= Number operated on is an n-bit number

= QOperation being performed is logical operation on each bit

= Masking operations
+ If we are only interested in last 8 bits of a 32 bit number X, how to
extract this?

+ X & OxFF (OxFF is notation for hex number FF)

o Zero out the most significant 24 bits; value of least significant 8
bits is same as the value of these in X

o XABCD27A4 & OxFF = xA4 (in 32 bits: 0x000000A4)

« X&0x1=0if Xis even and =1 if X is odd

12

Bitwise Logical Operations

= View n-bit field as a collection of n logical values

» Apply operation to each bit independently

= Bitwise AND: useful for clearing bits
* AND with zero =0
» AND with one = no change AND

11000101
00001111

= Bitwise OR: useful for setting bits
* OR with zero = no change

* OR with one =1
Computers don’t support individual bits as a data type OR

00000101

11000101
00001111

+ Just use least significant of n-bit integer
» Integers are generally more useful

11001111

13

Bitwise Operators in C

= Can only be applied to integral operands
= thatis, char, short, int and long

" (signed oOr unsigned)

& Bitwise AND
| Bitwise OR
~ Bitwise XOR
<< Shift Left
>> Shift Right

~ 1’s Complement (Inversion)

14

Bitwise AND

" Bitwise AND: 0101 AND 0110 in C: (5 & 6)
* 0100

= Bitwise OR: 0101 OR 0110 in C:(5 | 6)
. 0111

" Bitwise NOT: NOT 0101 in C: ~5
« 1010

" Bitwise XOR: 0101 XOR 0110 in C: 576
« 0011

"= Bitwise NAND - no C operator, therefore
¢ 0101 NAND 0110 in C: ~(5 & 6)

= Bitwise NOR - no C operator, therefore
* 0101 NOR 0110 in C: ~(5 | 6)

15

Shift Operations

= x = 01100001 and y=2 (using 8-bit numbers)
=z 10100001
"X >> vy
* x right shifted y bit positions, sign extended/arithmetic shift
o Sign bit shifted into positions vacated by shifted bits
e x= 01100001 y=2 (using 8-bit numbers)
ex > y = 00011000
ez >> vy =11101000
" X <<y
e x left shifted y bit positions, zero placed in
positions vacated by shifted bits
ex << y = 10000100
ez << y = 10000100

= In C, X,y are 32 bit numbers:

e What is F= (x >> 31) & 0x1

16

Boolean Relational Operators

= What is the semantics of:
* If (x==0) then
* how many outcomes for (x==0) ?

= Concept of boolean operators
» Apply logic operators, but treat input and output as boolean variables
o Only 1 or 0 (True or False) values for entire variable

» But input strings can be n-bits long?
o Treat entire string as ONE boolean variable
o How?

17

Logical Operations in C

= | Logical NOT
e Ix
o Ix=0 if x is non-zero, !x=1 if value of x is zero
= && Logical AND
* x&&y
o x && y = 1 if value of x is not zero and value of y is not zero
o x && y =0 if both x and y are zero
» || logical OR
*xlly
o x || y =1 if at least one of x,y are not zero
o X ||y = 0if both x,y are zero

18

Examples

= 8 bit numbers, f=7, g=8
e £= 00000111 g = 00001000
» h= (f & g) (bitwise AND)...
* h= 00000000
= h = (f && g) (logical AND)..
eh =1
= 'h = 0 since h is non-zero
»* h= (f | g) (bitwise OR).. h= ?
»* h= (£ || g) (logical OR)... h= ?
* h= (~f | ~g)..h=?
» h= (!f && !g)..h=?

19

Byte-Oriented Memory Organization

= Programs Refer to Virtual Addresses
» Conceptually very large array of bytes

+ Actually implemented with hierarchy of different memory types
o SRAM, DRAM, disk
o Only allocate for regions actually used by program

« In Unix and Windows, address space private to particular “process”
o Program being executed
o Program can clobber its own data, but not that of others

= Compiler + Run-Time System Control Allocation
* Where different program objects should be stored

* Multiple mechanisms: static, stack, and heap
* In any case, all allocation within single virtual address space

20

10

Encoding Byte Values

= Byte = 8 bits
« Binary 00000000, to 11111111,
* Decimal: 04 to 2559
* Hexadecimal 004 to FFqg
o Base 16 number representation
o Use characters ‘0’ to ‘9" and ‘A’ to ‘F’
o Write FA1D37B,g in C as 0xFA1D37B
— Or 0xfald37b

11

3] =3l [w] (@] [e=] =l [¥e) (e o] BN o} (821 N] 1] I f)

21

Machine Words

= Machine Has “Word Size”
» Nominal size of integer-valued data
o Including addresses
» Some current machines are 32 bits (4 bytes)
o Limits addresses to 4GB

o Potentially address ~ 1.8 X 10'° bytes
» Machines support multiple data formats

o Fractions or multiples of word size

o Always integral number of bytes

o Becoming too small for memory-intensive applications
» Most (and all Higher-end) systems are 64 bits (8 bytes)

22

11

Word-Oriented Memory Organization

32-bit 64-bit pyes pgar
Words Words y)

0000
. Addr 0001

» Addresses Specify Byte booo 0002
Locations Adar 0003

» Address of first byte in 0000 0004
word Adar 0005

+ Addresses of successive 2004 0006
words differ by 4 (32-bit) or 0007

8 (64-bit) 0008

Adar 0009

0008 Addr 0010

= 0011

0008 0012

Adar 0013

0012 0014

0015

23

Byte Ordering

= How should bytes within multi-byte word be ordered in
memory?
= Conventions
» PowerPC (old Mac’ s) are “Big Endian” machines
o Least significant byte has highest address
o Big end first
« Intel x86, PC’ s are “Little Endian” machines
o Least significant byte has lowest address
o Little end first

» Most network protocols use Big Endian

= The terms big-endian and little-endian come from Jonathan Swift’s eighteenth-
century satire Gulliver's Travels. The subjects of the empire of Blefuscu were
divided into two factions: those who ate eggs starting from the big end and
those who ate eggs starting from the little end.

24

12

Byte Ordering Example

» Big Endian
+ Least significant byte has highest address
= Little Endian
+ Least significant byte has lowest address
= Example
» Variable x has 4-byte representation 0x01234567
+ Address given by &x is 0x100

Big Endian 0x100 0x101 0x102 0x103
L1 Jorfosfasfer] [|

Little Endian 0x100 0x101 0x102 0x103
| | | 67 [45 [23] o1] | |

25

Representing Integers

Decimal: 15213

[] 1 = .
int A = 15213; Binary: 0011 1011 0110 1101

= int B -15213;
= long int C = 15213; Hex: 0000 3 B 6 D

Decimal: -15213

Hex: FFFF C 4 9 3

eLittle endian layout for A:
eFor B
eFor C
eBig endian layout for A:
eFor B:
eFor C:

26

13

Representing Integers

= int A = 15213;
= int B = -15213;

= long int C =

Little Endian ~ BigEndian

15213;

00

00

3B

6D
00
00

6D

Little Endian Big Endian

FE

FE

C4

93
c4
FF
FF

93

Little endian Little endian 64bit

00
C
00

00
00

™~

6D 6D 00
3B 3B 00
00 00 3B
00 00 6D

Big Endian

B: Two’'s complement representation

27

Why this discussion of Bit manipulation

operations in C

Project 2!

» Project 2: Given a set of functions, each of which does not

use conditional statements and implements some bit
manipulation function, determine the function being

implemented.

* Rewrite the code to provide an equivalent more readable code using
any C operators including conditional statements.
» Why is this useful — some functions can be executed much quicker if
they can re-written using bit manipulation operations

28

14

